Factorization and primality testing /

Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles.

Bibliographic Details
Main Author: Bressoud, David M. (autor)
Format: Kit
Language:Spanish
English
Published: New York: Springer-Verlag, 2019.
Edition:First edition
Series:Undergraduate texts in mathematics
Subjects:

MARC

LEADER 00000nac a2200000 i 4500
003 Ucuenca
005 20230308230638.0
006 a||||gr|||| 001 0
007 ta
008 191002t20191989xxu gr|||| 001 0 spa a
999 |c 157466  |d 157466 
020 |a 978-1-4612-8871-8 
020 |a 978-1-4612-4544-5  |q (eBook) 
040 |a UCuenca-cdrjbv  |b spa  |c UCuenca  |e rda 
041 0 |a eng 
082 0 |2 22  |a 512.74  |c 28664308 
100 1 |9 237609  |a Bressoud, David M.  |e autor 
245 |a Factorization and primality testing /   |c David M. Bressoud. 
250 |a First edition 
264 1 |a New York:   |b Springer-Verlag,   |c 2019. 
264 4 |c ©1989 
300 |a xiii, 237 páginas:   |c 24 cm 
336 |2 rdacontent  |a texto  |b txt 
337 |2 rdamedia  |a no mediado  |b n 
338 |2 rdacarrier  |a volumen  |b nc 
490 |a Undergraduate texts in mathematics 
504 |a incl. bibind. 
505 1 |a Unique factorization and the Euclidean algorithm -- Primes and perfect numbers -- Fermat, euler, and pseudoprimes -- The RSA public key crypto-system --Factorization techniques from fermat to today -- Strong pseudoprimes and quadratic residues -- Quadratic reciprocity -- The quadratic sieve -- Primitive roots and a test for primality -- continued fractions -- Continued fractions continued, applications -- Lucas sequences -- Groups and elliptic curves -- Applications of elliptic curves -- The primes below 5000. 
520 3 |a Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. 
650 1 0 |a Álgebra  |9 4922 
650 1 0 |a Matemática  |9 12761 
942 |2 ddc  |c CR  |z bladimir.cabrerar@ucuenca.edu.ec  |0 1