Novel systems biology tools for the identification of biomarkers and drug targets in cancer research.

El cáncer es la segunda causa de muerte en todo el mundo, y solamente podrá ser curado mediante una completa comprensión de toda su biología subyacente. Esta enfermedad se caracteriza por una compleja reprogramación de la mayoría de los procesos celulares, favoreciendo el crecimiento, la prolifer...

Full description

Bibliographic Details
Main Authors: Valcárcel-García, L.V. (Luis Vitores), Planes-Pedreño, F.J. (Francisco Javier), Agirre-Ena, X. (Xabier)
Format: info:eu-repo/semantics/doctoralThesis
Language:eng
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10171/64531
_version_ 1793400602023165952
author Valcárcel-García, L.V. (Luis Vitores)
Planes-Pedreño, F.J. (Francisco Javier)
Agirre-Ena, X. (Xabier)
author_facet Valcárcel-García, L.V. (Luis Vitores)
Planes-Pedreño, F.J. (Francisco Javier)
Agirre-Ena, X. (Xabier)
author_sort Valcárcel-García, L.V. (Luis Vitores)
collection DSpace
description El cáncer es la segunda causa de muerte en todo el mundo, y solamente podrá ser curado mediante una completa comprensión de toda su biología subyacente. Esta enfermedad se caracteriza por una compleja reprogramación de la mayoría de los procesos celulares, favoreciendo el crecimiento, la proliferación y la evasión del sistema inmunitario. La llegada de la secuenciación masiva y experimentos ‘high-throughput’, también conocidos como tecnologías ómicas, ha permitido investigar el cáncer desde un punto de vista más holístico, contribuyendo de forma decisiva al desarrollo del campo de la Biología de Sistemas, una parte vital de la lucha actual contra esta enfermedad. El principal objetivo de esta tesis doctoral es proporcionar a la comunidad científica nuevas herramientas en el campo de la biología de sistemas para la identificación de dianas terapéuticas y biomarcadores en el cáncer. Esta tesis doctoral se divide en dos partes. La primera parte se centra en el modelado basado en restricciones (‘Constraint-Based Modeling’, CBM) y en el desarrollo de herramientas computacionales para la identificación de dianas terapéuticas utilizando modelos metabólicos a escala genómica y datos de transcriptómica. En primer lugar, se muestra el método rMTA: ‘robust Metabolic Transformation Analysis’, un algoritmo que presenta una mejoría sobre una versión publicada previamente, MTA. Estas metodologías buscan perturbaciones genéticas/farmacológicas que transformen un fenotipo metabólico enfermo de vuelta a un fenotipo sano. En segundo lugar, presentamos gMCStool, una herramienta automatizada para predecir vulnerabilidades metabólicas en cáncer. gMCStool explota el concepto de ‘genetic Minimal Cut Sets’ (gMCSs), basado en la letalidad sintética y desarrollado previamente por nuestro grupo. gMCStool adapta los algoritmos anteriores a los datos de secuenciación masiva del transcriptoma (RNA-seq) y a Human1, la reconstrucción del metabolismo humano más reciente. Se presenta una prueba de concepto de gMCStool para el mieloma múltiple (MM). Dilucidamos y validamos in vitro la dependencia de CTPS1 de un subgrupo de pacientes de MM. La segunda parte de esta tesis doctoral se centra en la búsqueda de biomarcadores que sirvan tanto para la estratificación de pacientes según el riesgo y respuesta a terapia. En primer lugar, presentamos un método que utiliza experimentos de RNA-seq de forma alternativa, para predecir la actividad de los promotores de los genes. Identificamos un subconjunto de promotores que mejora la estratificación de los pacientes en comparación con los biomarcadores genéticos establecidos y catalogados como de alto riesgo. En segundo lugar, presentamos una nueva técnica de aprendizaje automático para la regresión lineal, denominada BOSO (‘Bilevel Optimization Selector Operator’), que proporciona una solución más elegante al problema de la selección de variables. BOSO mejora las metodologías existentes para conjuntos de datos en los que el número de variables es mayor que el número de muestras, frecuentes en la investigación biomédica. Proporcionamos una prueba de concepto de BOSO para la predicción de la sensibilidad en líneas celulares de cáncer a distintos fármacos. Se realiza un análisis computacional detallado y una validación experimental para Metotrexato, un fármaco bien estudiado y dirigido contra el metabolismo del cáncer. Finalmente, todos los modelos matemáticos, algoritmos, herramientas y resultados de la investigación realizada han sido publicados en repositorios públicos, como la COBRAtoolbox, GitHub, CRAN o Docker Hub.
format info:eu-repo/semantics/doctoralThesis
id oai:dadun.unav.edu:10171-64531
institution Universidad de Navarra
language eng
publishDate 2022
record_format dspace
spelling oai:dadun.unav.edu:10171-645312022-10-21T01:04:36Z Novel systems biology tools for the identification of biomarkers and drug targets in cancer research. Valcárcel-García, L.V. (Luis Vitores) Planes-Pedreño, F.J. (Francisco Javier) Agirre-Ena, X. (Xabier) Biología Computacional Mieloma Múltiple Metabolismo Biomarcadores Machine Learning El cáncer es la segunda causa de muerte en todo el mundo, y solamente podrá ser curado mediante una completa comprensión de toda su biología subyacente. Esta enfermedad se caracteriza por una compleja reprogramación de la mayoría de los procesos celulares, favoreciendo el crecimiento, la proliferación y la evasión del sistema inmunitario. La llegada de la secuenciación masiva y experimentos ‘high-throughput’, también conocidos como tecnologías ómicas, ha permitido investigar el cáncer desde un punto de vista más holístico, contribuyendo de forma decisiva al desarrollo del campo de la Biología de Sistemas, una parte vital de la lucha actual contra esta enfermedad. El principal objetivo de esta tesis doctoral es proporcionar a la comunidad científica nuevas herramientas en el campo de la biología de sistemas para la identificación de dianas terapéuticas y biomarcadores en el cáncer. Esta tesis doctoral se divide en dos partes. La primera parte se centra en el modelado basado en restricciones (‘Constraint-Based Modeling’, CBM) y en el desarrollo de herramientas computacionales para la identificación de dianas terapéuticas utilizando modelos metabólicos a escala genómica y datos de transcriptómica. En primer lugar, se muestra el método rMTA: ‘robust Metabolic Transformation Analysis’, un algoritmo que presenta una mejoría sobre una versión publicada previamente, MTA. Estas metodologías buscan perturbaciones genéticas/farmacológicas que transformen un fenotipo metabólico enfermo de vuelta a un fenotipo sano. En segundo lugar, presentamos gMCStool, una herramienta automatizada para predecir vulnerabilidades metabólicas en cáncer. gMCStool explota el concepto de ‘genetic Minimal Cut Sets’ (gMCSs), basado en la letalidad sintética y desarrollado previamente por nuestro grupo. gMCStool adapta los algoritmos anteriores a los datos de secuenciación masiva del transcriptoma (RNA-seq) y a Human1, la reconstrucción del metabolismo humano más reciente. Se presenta una prueba de concepto de gMCStool para el mieloma múltiple (MM). Dilucidamos y validamos in vitro la dependencia de CTPS1 de un subgrupo de pacientes de MM. La segunda parte de esta tesis doctoral se centra en la búsqueda de biomarcadores que sirvan tanto para la estratificación de pacientes según el riesgo y respuesta a terapia. En primer lugar, presentamos un método que utiliza experimentos de RNA-seq de forma alternativa, para predecir la actividad de los promotores de los genes. Identificamos un subconjunto de promotores que mejora la estratificación de los pacientes en comparación con los biomarcadores genéticos establecidos y catalogados como de alto riesgo. En segundo lugar, presentamos una nueva técnica de aprendizaje automático para la regresión lineal, denominada BOSO (‘Bilevel Optimization Selector Operator’), que proporciona una solución más elegante al problema de la selección de variables. BOSO mejora las metodologías existentes para conjuntos de datos en los que el número de variables es mayor que el número de muestras, frecuentes en la investigación biomédica. Proporcionamos una prueba de concepto de BOSO para la predicción de la sensibilidad en líneas celulares de cáncer a distintos fármacos. Se realiza un análisis computacional detallado y una validación experimental para Metotrexato, un fármaco bien estudiado y dirigido contra el metabolismo del cáncer. Finalmente, todos los modelos matemáticos, algoritmos, herramientas y resultados de la investigación realizada han sido publicados en repositorios públicos, como la COBRAtoolbox, GitHub, CRAN o Docker Hub. Cancer, the second cause of death all around the world, can only be beaten by a complete understanding of its underlying biology. Cancer is characterized by a complex reprogramming of key cellular processes in order to support growth and proliferation, and evade the immune system. The advent of high-throughput (omics) technologies have enabled to investigate cancer from a more holistic point of view, leading to the development of the field of Systems Biology, a vital part of the current fight against cancer. The main objective of this doctoral thesis is to provide the community with novel system biology tools for the identification of drug targets and biomarkers in cancer. This doctoral thesis can be divided into two distinct parts. The first part is focused on constraint-based modeling and the development of computational tools for identifying therapeutic targets using genome-scale metabolic models and transcriptomics data. First, the robust Metabolic Transformation Analysis (rMTA) approach is presented. rMTA proposes a more robust version of a previously developed algorithm, MTA, which searches for genetic/drug perturbations that transform a disease metabolic phenotype back to the healthy situation. Second, we introduce gMCStool, an automated tool to predict metabolic vulnerabilities in cancer. gMCStool exploits the concept of genetic Minimal Cut Sets (gMCSs), a network-based approach to synthetic lethality, previously developed in our group. gMCStool adapts previous algorithms to RNA-seq data and Human1, the most recent human metabolic reconstruction. Proof-of-concept of gMCStool is presented for multiple myeloma (MM). We elucidated and in vitro validated the dependence on CTPS1 of a subgroup of MM patients. The second part of this doctoral thesis focuses on the search of biomarkers that guide patient stratification according to prognosis or response to therapy. Firstly, we present a method that uses RNA-seq experiments in a nonconventional way for predicting the gene promoter activity. We identify a subset of gene promoters that improves the prognosis of MM patients in combination with some of the stablished high-risk genetic biomarkers. Secondly, we present a novel machine learning technical for linear regression, called BOSO (Bilevel Optimization Selector Operator), which provides a more elegant solution to the feature selection problem. BOSO improves existing methodologies in datasets where the number of variables is higher than the number of samples, which are frequent in biomedical research. We provide a proof of concept of BOSO for the prediction of drug sensitivity in cancer cell lines. Detailed computational analysis and experimental validation is conducted for methotrexate, a well-studied drug targeting cancer metabolism. Finally, all the research, models and tools discussed in this dissertation have been published in open repositories, including the COBRA toolbox, GitHub, CRAN or Docker Hub. 2022-10-20T07:50:02Z 2022-10-20T07:50:02Z 2022-07-27 2022-07-01 info:eu-repo/semantics/doctoralThesis https://hdl.handle.net/10171/64531 eng info:eu-repo/semantics/openAccess application/pdf
spellingShingle Biología Computacional
Mieloma Múltiple
Metabolismo
Biomarcadores
Machine Learning
Valcárcel-García, L.V. (Luis Vitores)
Planes-Pedreño, F.J. (Francisco Javier)
Agirre-Ena, X. (Xabier)
Novel systems biology tools for the identification of biomarkers and drug targets in cancer research.
title Novel systems biology tools for the identification of biomarkers and drug targets in cancer research.
title_full Novel systems biology tools for the identification of biomarkers and drug targets in cancer research.
title_fullStr Novel systems biology tools for the identification of biomarkers and drug targets in cancer research.
title_full_unstemmed Novel systems biology tools for the identification of biomarkers and drug targets in cancer research.
title_short Novel systems biology tools for the identification of biomarkers and drug targets in cancer research.
title_sort novel systems biology tools for the identification of biomarkers and drug targets in cancer research.
topic Biología Computacional
Mieloma Múltiple
Metabolismo
Biomarcadores
Machine Learning
url https://hdl.handle.net/10171/64531
work_keys_str_mv AT valcarcelgarcialvluisvitores novelsystemsbiologytoolsfortheidentificationofbiomarkersanddrugtargetsincancerresearch
AT planespedrenofjfranciscojavier novelsystemsbiologytoolsfortheidentificationofbiomarkersanddrugtargetsincancerresearch
AT agirreenaxxabier novelsystemsbiologytoolsfortheidentificationofbiomarkersanddrugtargetsincancerresearch