Mechanical and morphological modulation of electrospun polymeric scaffolds for tissue engineering applications

Electrospinning technologies herald the arrival of a new era in which previously unthinkable scaffolds for tissue engineering applications will be solved efficiently. However, electrospinning techniques, like solution electrospinning and melt electrowriting are held down by fabrications parameters...

Full description

Bibliographic Details
Main Authors: Bikuna-Izagirre, M. (María), Paredes-Puente, J. (Jacobo), Aldazabal, J. (Javier)
Format: info:eu-repo/semantics/doctoralThesis
Language:eng
Published: Servicio de Publicaciones. Universidad de Navarra 2023
Subjects:
Online Access:https://hdl.handle.net/10171/66810
_version_ 1793400537474924544
author Bikuna-Izagirre, M. (María)
Paredes-Puente, J. (Jacobo)
Aldazabal, J. (Javier)
author_facet Bikuna-Izagirre, M. (María)
Paredes-Puente, J. (Jacobo)
Aldazabal, J. (Javier)
author_sort Bikuna-Izagirre, M. (María)
collection DSpace
description Electrospinning technologies herald the arrival of a new era in which previously unthinkable scaffolds for tissue engineering applications will be solved efficiently. However, electrospinning techniques, like solution electrospinning and melt electrowriting are held down by fabrications parameters, technology limitations, and the application perse. The science of scaffolding fabrication seeks to mimic the extracellular matrix of a particular tissue in ways that mitigates the damage or enables its pathophysiological study. Thenceforce, scaffolds have the primordial role of not only supporting the cells, but to replicate as close as possible the native extracellular matrix, taking into consideration the biocompatibility, biodegradability, morphology and mechanical properties. The last two properties are pivotal in the scaffold ́s outcome, as cells communicate with the environment, and behave in response to external signals. In context of scaffolds ́ assembly, electrospinning fabrication parameters should be correctly modulated, to ensure an appropriate cellular environment. In this dissertation we attempt to tackle this concern relying on solution electrospinning and melt electrowriting techniques. As potential tissue engineering applications, the recreation of an artificial human trabecular meshwork and a skeletal muscle platform are developed. The mechanical and morphological requirements of each tissue are evaluated and fabrication parameters adapted. An in vitro human trabecular meshwork scaffold was developed and validated with human trabecular meshwork cells ́ behavioral studies. With the development of a perfusion bioreactor human trabecular meshwork cells react to medicaments inducing measurable pressure changes. Finally, an attempt for skeletal muscle platform was made. This first approach enabled us the optimization of the process for next attempts.
format info:eu-repo/semantics/doctoralThesis
id oai:dadun.unav.edu:10171-66810
institution Universidad de Navarra
language eng
publishDate 2023
publisher Servicio de Publicaciones. Universidad de Navarra
record_format dspace
spelling oai:dadun.unav.edu:10171-668102023-12-21T08:29:08Z Mechanical and morphological modulation of electrospun polymeric scaffolds for tissue engineering applications Bikuna-Izagirre, M. (María) Paredes-Puente, J. (Jacobo) Aldazabal, J. (Javier) Mechanical modulation Electrospun polymeric scaffolds Tissue regeneration Scaffold design Polymer processing Mechanical properties Electrospinning technologies herald the arrival of a new era in which previously unthinkable scaffolds for tissue engineering applications will be solved efficiently. However, electrospinning techniques, like solution electrospinning and melt electrowriting are held down by fabrications parameters, technology limitations, and the application perse. The science of scaffolding fabrication seeks to mimic the extracellular matrix of a particular tissue in ways that mitigates the damage or enables its pathophysiological study. Thenceforce, scaffolds have the primordial role of not only supporting the cells, but to replicate as close as possible the native extracellular matrix, taking into consideration the biocompatibility, biodegradability, morphology and mechanical properties. The last two properties are pivotal in the scaffold ́s outcome, as cells communicate with the environment, and behave in response to external signals. In context of scaffolds ́ assembly, electrospinning fabrication parameters should be correctly modulated, to ensure an appropriate cellular environment. In this dissertation we attempt to tackle this concern relying on solution electrospinning and melt electrowriting techniques. As potential tissue engineering applications, the recreation of an artificial human trabecular meshwork and a skeletal muscle platform are developed. The mechanical and morphological requirements of each tissue are evaluated and fabrication parameters adapted. An in vitro human trabecular meshwork scaffold was developed and validated with human trabecular meshwork cells ́ behavioral studies. With the development of a perfusion bioreactor human trabecular meshwork cells react to medicaments inducing measurable pressure changes. Finally, an attempt for skeletal muscle platform was made. This first approach enabled us the optimization of the process for next attempts. Las tecnologías de electrospinning (electrohilado) han establecido una nueva era en la que permiten resolver de manera eficiente scaffolds (andamios o estructuras) para aplicaciones de ingeniería de tejidos que antes eran impensables. Sin embargo, las técnicas de electrospinning, como el solution electrospinning (electrohilado de solución) o el melt electrowriting (electroescritura de fusión), se ven limitadas por los parámetros de fabricación, las limitaciones tecnológicas y la propia aplicación. La ciencia de la fabricación de scaffolds busca imitar la matrix extracelular de un tejido particular de manera que se mitigue el daño o se facilite su estudio fisiopatológico. Por lo tanto, los scaffoldstienen el papel primordial no solo de soportar las células, sino de replicar lo más fielmente posible la matriz extracelular nativa, teniendo en cuenta la biocompatibilidad, la biodegradabilidad, la morfología y las propiedades mecánicas. Estas dos últimas propiedades son fundamentales para el resultado del scaffold, ya que las células se comunican con el entorno y se comportan en respuesta a señales externas. En el contexto del ensamblaje de scaffolds, los parámetros de fabricación del electrospinning deben modularse correctamente para garantizar un entorno celular adecuado. En esta disertación, intentamos abordar esta preocupación confiando en las técnicas de solution electrospinning and melt electrowriting. Como posibles aplicaciones de la ingenieria de tejidos, se desarrolla la recreación de una malla trabecular humana artificial y una plataforma de músculo esquelético. Se evalúan los requisitos mecánicos y morfológicos de cada tejido y se adaptan los parámetros de fabricación. Se ha fabricado un scaffold de malla trabecular humana y se ha validado con células de este mismo tejido, evaluando su crecimiento y comportamiento. Además, gracias al desarrollo de una plataforma de perfusión se han podido medir los cambios de presión generados por las células al sometarlas a distintos medicamentos. Finalmente, se ha desarrollado una plataforma para músculo esquelético que ha permitido la optimización del proceso para futuros estudios. 2023-07-18T08:21:41Z 2023-07-18T08:21:41Z 2023-06 2023-06-22 info:eu-repo/semantics/doctoralThesis https://hdl.handle.net/10171/66810 eng info:eu-repo/semantics/openAccess application/pdf Servicio de Publicaciones. Universidad de Navarra
spellingShingle Mechanical modulation
Electrospun polymeric scaffolds
Tissue regeneration
Scaffold design
Polymer processing
Mechanical properties
Bikuna-Izagirre, M. (María)
Paredes-Puente, J. (Jacobo)
Aldazabal, J. (Javier)
Mechanical and morphological modulation of electrospun polymeric scaffolds for tissue engineering applications
title Mechanical and morphological modulation of electrospun polymeric scaffolds for tissue engineering applications
title_full Mechanical and morphological modulation of electrospun polymeric scaffolds for tissue engineering applications
title_fullStr Mechanical and morphological modulation of electrospun polymeric scaffolds for tissue engineering applications
title_full_unstemmed Mechanical and morphological modulation of electrospun polymeric scaffolds for tissue engineering applications
title_short Mechanical and morphological modulation of electrospun polymeric scaffolds for tissue engineering applications
title_sort mechanical and morphological modulation of electrospun polymeric scaffolds for tissue engineering applications
topic Mechanical modulation
Electrospun polymeric scaffolds
Tissue regeneration
Scaffold design
Polymer processing
Mechanical properties
url https://hdl.handle.net/10171/66810
work_keys_str_mv AT bikunaizagirremmaria mechanicalandmorphologicalmodulationofelectrospunpolymericscaffoldsfortissueengineeringapplications
AT paredespuentejjacobo mechanicalandmorphologicalmodulationofelectrospunpolymericscaffoldsfortissueengineeringapplications
AT aldazabaljjavier mechanicalandmorphologicalmodulationofelectrospunpolymericscaffoldsfortissueengineeringapplications