Additive Manufacturing & Topology Optimisation of electrical machines.
In recent years, additive manufacturing has been gaining ground among traditional manufacturing methods in many different applications. This is mainly due to its ease of prototyping, material savings and above all the highly complex geometries that can be achieved. Despite its many advantages, th...
Main Authors: | , , |
---|---|
Format: | info:eu-repo/semantics/doctoralThesis |
Language: | eng |
Published: |
Servicio de Publicaciones. Universidad de Navarra
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10171/67170 |
_version_ | 1793400604598468608 |
---|---|
author | Lizarribar Carrillo, B.(Borja) Martínez-Iturralde-Maiza, M. (Miguel) Prieto-Rocandio, B. (Borja) |
author_facet | Lizarribar Carrillo, B.(Borja) Martínez-Iturralde-Maiza, M. (Miguel) Prieto-Rocandio, B. (Borja) |
author_sort | Lizarribar Carrillo, B.(Borja) |
collection | DSpace |
description | In recent years, additive manufacturing has been gaining ground among traditional
manufacturing methods in many different applications. This is mainly due to its ease of
prototyping, material savings and above all the highly complex geometries that can be
achieved. Despite its many advantages, the use of additive manufacturing in electrical
machines has been limited. The lack of maturity of the manufacturing processes and the
increase in losses when applying additive approaches to some parts, mainly stators, have led
little implementation in the field of electrical machines.
The geometric freedom offered by additive manufacturing paves the way for the use of novel
optimisation techniques, such as topology optimisation. Traditionally, topology optimisation
has not been widely used because the complex geometries obtained by these algorithms are
not easily produced by traditional manufacturing methods. However, thanks to additive
manufacturing, topology optimisation has started to be used, mainly for mechanical
applications and it has demonstrated its ability to reduce weight without compromising
mechanical stability in several cases. Nevertheless, topology optimisation for physics other
than mechanical has not been thoroughly studied, let alone for the simultaneous optimisation
of different physics.
In view of the scenario described, this thesis investigates the benefits that additive
manufacturing and topology optimisation can bring to the design of electrical machines.
For the additive manufacturing of electrical machines, a thorough literature review is carried
out on the application of this manufacturing approach to different parts of electrical machines,
active and non-active. Two main case studies are presented: in the first, the rotor, the shaft,
the stator and the housing of an aerospace actuator are manufactured by L-PBF in FeCoV and
the assembled actuator is tested. In the second case, a rotor is manufactured in FeSi by LP-
DED. Finally, not considered an additive manufacturing case study itself in this thesis, but two
electrical conductor prototypes are manufactured in CuCr1Zr and an additional geometry is
manufactured in AlSi10Mg by L-PBF.
With regard to topology optimisation of electrical machines, a description of the main
topology optimisation methods used is given and their application to electrical machine
components is presented. In a similar way to additive manufacturing, two case studies are
analysed. First, a novel multiphysics - mechanical and electromagnetic - topology optimisation
method is presented, in which the rotor and the stator of a permanent magnet motor are
optimised simultaneously. This method is compared with two methods found in the literature,
SIMP and on-off. Secondly, another topology optimisation method is described and applied to
an electrical conductor model. The proposed algorithm involves a multiphysics - thermal and
electromagnetic - hybrid parametric topology optimisation approach. Two reduced length
geometries and one full length prototype are built via additive manufacturing.
Finally, conclusions regarding additive manufacturing and topology optimisation of electrical
machines are drawn from the work presented in this thesis. Future lines of work for additive
manufacturing and topology optimisation of electrical machines are also presented. |
format | info:eu-repo/semantics/doctoralThesis |
id | oai:dadun.unav.edu:10171-67170 |
institution | Universidad de Navarra |
language | eng |
publishDate | 2023 |
publisher | Servicio de Publicaciones. Universidad de Navarra |
record_format | dspace |
spelling | oai:dadun.unav.edu:10171-671702023-09-04T05:12:14Z Additive Manufacturing & Topology Optimisation of electrical machines. Lizarribar Carrillo, B.(Borja) Martínez-Iturralde-Maiza, M. (Miguel) Prieto-Rocandio, B. (Borja) Additive Manufacturing Topology optimisation Electrical machines Soft-magnetic materials Electrical conductor AM Laser powder directed energy deposition Powder bed fusion Fabricación In recent years, additive manufacturing has been gaining ground among traditional manufacturing methods in many different applications. This is mainly due to its ease of prototyping, material savings and above all the highly complex geometries that can be achieved. Despite its many advantages, the use of additive manufacturing in electrical machines has been limited. The lack of maturity of the manufacturing processes and the increase in losses when applying additive approaches to some parts, mainly stators, have led little implementation in the field of electrical machines. The geometric freedom offered by additive manufacturing paves the way for the use of novel optimisation techniques, such as topology optimisation. Traditionally, topology optimisation has not been widely used because the complex geometries obtained by these algorithms are not easily produced by traditional manufacturing methods. However, thanks to additive manufacturing, topology optimisation has started to be used, mainly for mechanical applications and it has demonstrated its ability to reduce weight without compromising mechanical stability in several cases. Nevertheless, topology optimisation for physics other than mechanical has not been thoroughly studied, let alone for the simultaneous optimisation of different physics. In view of the scenario described, this thesis investigates the benefits that additive manufacturing and topology optimisation can bring to the design of electrical machines. For the additive manufacturing of electrical machines, a thorough literature review is carried out on the application of this manufacturing approach to different parts of electrical machines, active and non-active. Two main case studies are presented: in the first, the rotor, the shaft, the stator and the housing of an aerospace actuator are manufactured by L-PBF in FeCoV and the assembled actuator is tested. In the second case, a rotor is manufactured in FeSi by LP- DED. Finally, not considered an additive manufacturing case study itself in this thesis, but two electrical conductor prototypes are manufactured in CuCr1Zr and an additional geometry is manufactured in AlSi10Mg by L-PBF. With regard to topology optimisation of electrical machines, a description of the main topology optimisation methods used is given and their application to electrical machine components is presented. In a similar way to additive manufacturing, two case studies are analysed. First, a novel multiphysics - mechanical and electromagnetic - topology optimisation method is presented, in which the rotor and the stator of a permanent magnet motor are optimised simultaneously. This method is compared with two methods found in the literature, SIMP and on-off. Secondly, another topology optimisation method is described and applied to an electrical conductor model. The proposed algorithm involves a multiphysics - thermal and electromagnetic - hybrid parametric topology optimisation approach. Two reduced length geometries and one full length prototype are built via additive manufacturing. Finally, conclusions regarding additive manufacturing and topology optimisation of electrical machines are drawn from the work presented in this thesis. Future lines of work for additive manufacturing and topology optimisation of electrical machines are also presented. En los últimos años, la fabricación aditiva ha ido ganando terreno a los métodos de fabricación tradicionales en muchas aplicaciones diferentes. Esto se debe principalmente a su facilidad para crear prototipos, al ahorro de material y, sobre todo, a las geometrías altamente complejas que se pueden conseguir. A pesar de sus muchas ventajas, el uso de la fabricación aditiva en máquinas eléctricas ha sido limitado. La falta de madurez de los procesos de fabricación y el aumento de las pérdidas al aplicar enfoques aditivos a algunas piezas, principalmente estatores, han provocado una escasa implantación en el campo de las máquinas eléctricas. La libertad geométrica que ofrece la fabricación aditiva allana el camino para el uso de técnicas de optimización novedosas, como la optimización topológica. Tradicionalmente, la optimización de la topología no se ha utilizado mucho porque las geometrías complejas que obtienen estos algoritmos no son fáciles de producir con los métodos de fabricación tradicionales. Sin embargo, gracias a la fabricación aditiva, la optimización topológica ha empezado a utilizarse, principalmente para aplicaciones mecánicas, y ha demostrado su capacidad para reducir el peso sin comprometer la estabilidad mecánica en varios casos. Sin embargo, la optimización topológica para físicas distintas de la mecánica no se ha estudiado en profundidad, y mucho menos para la optimización simultánea de distintas físicas. Ante el escenario descrito, esta tesis investiga los beneficios que la fabricación aditiva y la optimización topológica pueden aportar al diseño de máquinas eléctricas. Para la fabricación aditiva de máquinas eléctricas, se realiza una revisión bibliográfica exhaustiva sobre la aplicación de este enfoque de fabricación a diferentes partes de máquinas eléctricas, activas y no activas. Se presentan dos casos prácticos principales: en el primero, el rotor, el eje, el estator y la carcasa de un actuador aeroespacial se fabrican mediante L-PBF en FeCoV y se prueba el actuador ensamblado. En el segundo caso, se fabrica un rotor en FeSi mediante LP-DED. Por último, no se considera un caso de estudio de fabricación aditiva propiamente dicho en esta tesis, pero se fabrican dos prototipos de conductores eléctricos en CuCr1Zr y una geometría adicional en AlSi10Mg mediante L-PBF. En cuanto a la optimización topológica de máquinas eléctricas, se describen los principales métodos de optimización topológica utilizados y se presenta su aplicación a componentes de máquinas eléctricas. De forma similar a la fabricación aditiva, se analizan dos casos prácticos. En primer lugar, se presenta un novedoso método de optimización topológica multifísica - mecánica y electromagnética- en el que se optimizan simultáneamente el rotor y el estator de un motor de imanes permanentes. Este método se compara con dos métodos encontrados en la literatura, SIMP y on-off. En segundo lugar, se describe otro método de optimización topológica y se aplica a un modelo de conductor eléctrico. El algoritmo propuesto implica un enfoque de optimización de topología paramétrica híbrida multifísica -térmica y electromagnética-. Se construyen dos geometrías de longitud reducida y un prototipo de longitud completa mediante fabricación aditiva. Finalmente, del trabajo presentado en esta tesis se extraen conclusiones sobre la fabricación aditiva y la optimización topológica de máquinas eléctricas. También se presentan futuras líneas de trabajo para la fabricación aditiva y la optimización topológica de máquinas eléctricas. 2023-08-28T10:54:28Z 2023-08-28T10:54:28Z 2023-07 2023-07-18 info:eu-repo/semantics/doctoralThesis https://hdl.handle.net/10171/67170 eng info:eu-repo/semantics/embargoedAccess application/pdf Servicio de Publicaciones. Universidad de Navarra |
spellingShingle | Additive Manufacturing Topology optimisation Electrical machines Soft-magnetic materials Electrical conductor AM Laser powder directed energy deposition Powder bed fusion Fabricación Lizarribar Carrillo, B.(Borja) Martínez-Iturralde-Maiza, M. (Miguel) Prieto-Rocandio, B. (Borja) Additive Manufacturing & Topology Optimisation of electrical machines. |
title | Additive Manufacturing & Topology Optimisation of electrical machines. |
title_full | Additive Manufacturing & Topology Optimisation of electrical machines. |
title_fullStr | Additive Manufacturing & Topology Optimisation of electrical machines. |
title_full_unstemmed | Additive Manufacturing & Topology Optimisation of electrical machines. |
title_short | Additive Manufacturing & Topology Optimisation of electrical machines. |
title_sort | additive manufacturing & topology optimisation of electrical machines. |
topic | Additive Manufacturing Topology optimisation Electrical machines Soft-magnetic materials Electrical conductor AM Laser powder directed energy deposition Powder bed fusion Fabricación |
url | https://hdl.handle.net/10171/67170 |
work_keys_str_mv | AT lizarribarcarrillobborja additivemanufacturingtopologyoptimisationofelectricalmachines AT martineziturraldemaizammiguel additivemanufacturingtopologyoptimisationofelectricalmachines AT prietorocandiobborja additivemanufacturingtopologyoptimisationofelectricalmachines |