A microstructure-based constitutive model for pearlite.
Fully pearlitic eutectoid steels have an excellent compromise of mechanical strength and ductility and are widely used for rails, prestressing tendons and high- strength wires. These excellent mechanical properties are a consequence of their particular nanocomposite structure combining thin c...
Main Authors: | , , |
---|---|
Format: | info:eu-repo/semantics/doctoralThesis |
Language: | eng |
Published: |
Servicio de Publicaciones. Universidad de Navarra.
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10171/69092 |
_version_ | 1793400560262578176 |
---|---|
author | Rodríguez-Páez, J. (Jorge) Alkorta-Barragán, J. (Jon) Martínez-Esnaola, J.M. (José Manuel) |
author_facet | Rodríguez-Páez, J. (Jorge) Alkorta-Barragán, J. (Jon) Martínez-Esnaola, J.M. (José Manuel) |
author_sort | Rodríguez-Páez, J. (Jorge) |
collection | DSpace |
description | Fully pearlitic eutectoid steels have an excellent compromise of mechanical
strength and ductility and are widely used for rails, prestressing tendons and high-
strength wires. These excellent mechanical properties are a consequence of their
particular nanocomposite structure combining thin cementite lamellae (~12% volume
fraction) with ferritic lamellae. This complex substructure entails a complex
microstructural and property evolution with applied strain that is difficult to model.
In this work, a microstructure-based constitutive model for pearlite accounting
for both the elastoplastic behaviour and the damage evolution is presented. The
original formulation, valid for mesoscopic scales, considers the behaviour of ferrite
and cementite separately, assuming that strengthening occurs through the
mechanisms acting in ferrite. For its application in macro-scale systems such as wire
drawing, a multi-colony homogenization strategy has been applied. For damage, a
Continuum Damage Mechanics approach adapted to the features of pearlite has been
adopted with the coupling of damage to the mechanical response. The model has
been implemented for use in finite element simulations and has been calibrated using
experimental data of tensile and torsion tests. Subsequently, the model has been
validated, confirming its predictive capabilities across various aspects, including the
mechanical response under different stress states, the build-up of internal stresses and
the evolution of the microstructure with deformation. |
format | info:eu-repo/semantics/doctoralThesis |
id | oai:dadun.unav.edu:10171-69092 |
institution | Universidad de Navarra |
language | eng |
publishDate | 2024 |
publisher | Servicio de Publicaciones. Universidad de Navarra. |
record_format | dspace |
spelling | oai:dadun.unav.edu:10171-690922024-02-19T06:06:48Z A microstructure-based constitutive model for pearlite. Rodríguez-Páez, J. (Jorge) Alkorta-Barragán, J. (Jon) Martínez-Esnaola, J.M. (José Manuel) Constitutive model. Pearlitic steels. Internal stresses. Plasticity. Anisotropy. Continuum damage mechanics. Fully pearlitic eutectoid steels have an excellent compromise of mechanical strength and ductility and are widely used for rails, prestressing tendons and high- strength wires. These excellent mechanical properties are a consequence of their particular nanocomposite structure combining thin cementite lamellae (~12% volume fraction) with ferritic lamellae. This complex substructure entails a complex microstructural and property evolution with applied strain that is difficult to model. In this work, a microstructure-based constitutive model for pearlite accounting for both the elastoplastic behaviour and the damage evolution is presented. The original formulation, valid for mesoscopic scales, considers the behaviour of ferrite and cementite separately, assuming that strengthening occurs through the mechanisms acting in ferrite. For its application in macro-scale systems such as wire drawing, a multi-colony homogenization strategy has been applied. For damage, a Continuum Damage Mechanics approach adapted to the features of pearlite has been adopted with the coupling of damage to the mechanical response. The model has been implemented for use in finite element simulations and has been calibrated using experimental data of tensile and torsion tests. Subsequently, the model has been validated, confirming its predictive capabilities across various aspects, including the mechanical response under different stress states, the build-up of internal stresses and the evolution of the microstructure with deformation. Los aceros eutectoides totalmente perlíticos presentan un excelente compromiso de resistencia mecánica y ductilidad, y se utilizan ampliamente para raíles, cables de pretensado y alambres de alta resistencia. Estas excelentes propiedades mecánicas son consecuencia de su particular estructura nanocompuesta que combina finas láminas de cementita (~12% de fracción volumétrica) con láminas ferríticas. Esta compleja subestructura conlleva una compleja evolución microestructural y de propiedades con la deformación aplicada que resulta difícil de modelizar. En este trabajo, se presenta un modelo constitutivo basado en la microestructura de la perlita que considera tanto el comportamiento elastoplástico como la evolución del daño. La formulación original, válida para escalas mesoscópicas, contempla el comportamiento de la ferrita y la cementita por separado, asumiendo que el endurecimiento se produce a través de los mecanismos que actúan en la ferrita. Para su aplicación en sistemas macroscópicos, como el trefilado de alambres, se ha aplicado una estrategia de homogeneización multi-colonia. En cuanto al daño, se ha adoptado un enfoque de la Mecánica del Daño Continuo adaptado a las características de la perlita, con el acoplamiento del daño a la respuesta mecánica. El modelo se ha implementado para su uso en simulaciones de elementos finitos y se ha sometido a un proceso de calibración utilizando datos experimentales de ensayos de tracción y torsión. Posteriormente, se ha validado el modelo, confirmando su capacidad predictiva en varios aspectos, incluyendo la respuesta mecánica bajo diferentes estados de tensión, la acumulación de tensiones internas y la evolución de la microestructura con la deformación. 2024-02-13T11:01:30Z 2024-02-13T11:01:30Z 2023-12 info:eu-repo/semantics/doctoralThesis https://hdl.handle.net/10171/69092 eng info:eu-repo/semantics/openAccess application/pdf Servicio de Publicaciones. Universidad de Navarra. |
spellingShingle | Constitutive model. Pearlitic steels. Internal stresses. Plasticity. Anisotropy. Continuum damage mechanics. Rodríguez-Páez, J. (Jorge) Alkorta-Barragán, J. (Jon) Martínez-Esnaola, J.M. (José Manuel) A microstructure-based constitutive model for pearlite. |
title | A microstructure-based constitutive model for pearlite. |
title_full | A microstructure-based constitutive model for pearlite. |
title_fullStr | A microstructure-based constitutive model for pearlite. |
title_full_unstemmed | A microstructure-based constitutive model for pearlite. |
title_short | A microstructure-based constitutive model for pearlite. |
title_sort | microstructure-based constitutive model for pearlite. |
topic | Constitutive model. Pearlitic steels. Internal stresses. Plasticity. Anisotropy. Continuum damage mechanics. |
url | https://hdl.handle.net/10171/69092 |
work_keys_str_mv | AT rodriguezpaezjjorge amicrostructurebasedconstitutivemodelforpearlite AT alkortabarraganjjon amicrostructurebasedconstitutivemodelforpearlite AT martinezesnaolajmjosemanuel amicrostructurebasedconstitutivemodelforpearlite AT rodriguezpaezjjorge microstructurebasedconstitutivemodelforpearlite AT alkortabarraganjjon microstructurebasedconstitutivemodelforpearlite AT martinezesnaolajmjosemanuel microstructurebasedconstitutivemodelforpearlite |