Aplicación de técnicas de minería de datos y análisis de tendencias para el pronóstico de demanda en las MiPymes del sector textil

Con la creciente expansión del sector textil, uno de los tópicos que ha generado mayor interés es el pronóstico de la demanda, ya que está ligado a diversas áreas dentro de las organizaciones generando hasta una dependencia para la toma de decisiones, sin embargo, a su vez propone un reto el cons...

Full description

Bibliographic Details
Main Author: Medina Samaniego, Héctor Wilfrido
Other Authors: Guamán Guachichullca, Noé Rodrigo
Format: bachelorThesis
Language:spa
Published: Universidad de Cuenca 2021
Subjects:
Online Access:http://dspace.ucuenca.edu.ec/handle/123456789/37158
Description
Summary:Con la creciente expansión del sector textil, uno de los tópicos que ha generado mayor interés es el pronóstico de la demanda, ya que está ligado a diversas áreas dentro de las organizaciones generando hasta una dependencia para la toma de decisiones, sin embargo, a su vez propone un reto el conseguir predicciones cercanas a la realidad debido a la volatilidad que genera el mercado. Muchos investigadores han venido utilizando métodos netamente estadísticos para predecir esta demanda y, en las últimas décadas se han visto apoyados por el uso de la inteligencia artificial (Machine Learning). Con el creciente uso de plataformas electrónicas tales como buscadores, páginas de ventas, etc., el interés por las organizaciones en aprovechar la información que generan los usuarios para mejorar sus servicios y productos se ha incrementado de forma sustancial. Este trabajo consistió en generar un modelo de pronóstico de demanda enfocado en las MiPymes del sector textil mediante datos obtenidos por medio de técnicas de minería de datos en tráfico de búsquedas e información histórica. Dicho modelo se generó a través de un conjunto de fases denominadas como: configuración de trabajo, recolección de datos, limpieza y adecuación, construcción y evaluación del modelo de pronóstico, utilizando algoritmos como la regresión lineal, regresión de Ridge y Lasso, K-nearest neighborns, support vector regression y random forest. Los resultados demostraron que los modelos Ridge y Support vector regression, proporcionaron mejores resultados en cuanto al error generado en la predicción comparado a modelos estadísticos tradicionales de regresión univariantes.