Towards the improvement of machine learning peak runoff forecasting by exploiting ground- and satellite-based precipitation data: A feature engineering approach

La predicción de picos de caudal en sistemas montañosos complejos presenta desafíos en hidrología debido a la falta de datos y las limitaciones de los modelos físicos. El aprendizaje automático (ML) ofrece una solución al permitir la integración de técnicas y productos satelitales de precipitació...

Full description

Bibliographic Details
Main Author: Muñoz Pauta, Paul Andrés
Other Authors: Célleri Alvear, Rolando Enrique
Format: bachelorThesis
Language:eng
Published: Universidad de Cuenca 2023
Subjects:
Online Access:http://dspace.ucuenca.edu.ec/handle/123456789/41878
Description
Summary:La predicción de picos de caudal en sistemas montañosos complejos presenta desafíos en hidrología debido a la falta de datos y las limitaciones de los modelos físicos. El aprendizaje automático (ML) ofrece una solución al permitir la integración de técnicas y productos satelitales de precipitación (SPPs). Sin embargo, se ha debatido sobre la efectividad del ML debido a su naturaleza de "caja negra" que dificulta la mejora del rendimiento y la reproducibilidad de los resultados. Para abordar estas preocupaciones, se han propuesto estrategias de ingeniería de características (FE) para incorporar conocimiento físico en los modelos de ML, mejorando la comprensión y precisión de las predicciones. Esta investigación doctoral tiene como objetivo mejorar la predicción de picos de caudal mediante la integración de conceptos hidrológicos a través de técnicas de FE y el uso de datos de precipitación in-situ y SPPs. Se exploran técnicas y estrategias de ML para mejorar la precisión en sistemas hidrológicos macro y mesoescala. Además, se propone una estrategia de FE para aprovechar la información de SPPs y superar la escasez de datos espaciales y temporales. La integración de técnicas avanzadas de ML y FE representa un avance en hidrología, especialmente para sistemas montañosos complejos con limitada o nula red de monitoreo. Los hallazgos de este estudio serán valiosos para tomadores de decisiones e hidrólogos, facilitando la mitigación de los impactos de los picos de caudal. Además, las metodologías desarrolladas se pueden adaptar a otros sistemas de macro y mesoescala, beneficiando a la comunidad científica en general.