Summary: | La predicción de picos de caudal en sistemas montañosos complejos presenta desafíos en
hidrología debido a la falta de datos y las limitaciones de los modelos físicos. El aprendizaje
automático (ML) ofrece una solución al permitir la integración de técnicas y productos satelitales
de precipitación (SPPs). Sin embargo, se ha debatido sobre la efectividad del ML debido a su
naturaleza de "caja negra" que dificulta la mejora del rendimiento y la reproducibilidad de los
resultados. Para abordar estas preocupaciones, se han propuesto estrategias de ingeniería de
características (FE) para incorporar conocimiento físico en los modelos de ML, mejorando la
comprensión y precisión de las predicciones. Esta investigación doctoral tiene como objetivo
mejorar la predicción de picos de caudal mediante la integración de conceptos hidrológicos a
través de técnicas de FE y el uso de datos de precipitación in-situ y SPPs. Se exploran técnicas
y estrategias de ML para mejorar la precisión en sistemas hidrológicos macro y mesoescala.
Además, se propone una estrategia de FE para aprovechar la información de SPPs y superar la
escasez de datos espaciales y temporales. La integración de técnicas avanzadas de ML y FE
representa un avance en hidrología, especialmente para sistemas montañosos complejos con
limitada o nula red de monitoreo. Los hallazgos de este estudio serán valiosos para tomadores
de decisiones e hidrólogos, facilitando la mitigación de los impactos de los picos de caudal.
Además, las metodologías desarrolladas se pueden adaptar a otros sistemas de macro y
mesoescala, beneficiando a la comunidad científica en general.
|