Análisis de algoritmos de aprendizaje máquina aplicados a la asignación de recursos en la red de acceso para redes 5G con segmentación

El presente proyecto de titulación se enfoca en el estudio y mejora del método de ac- ceso aleatorio en redes 5G, aplicando dos enfoques para la administración dinámica de preámbulos. En este contexto, los usuarios solicitan recursos de enlace ascenden- te mediante la transmisión de preámbulos,...

Full description

Bibliographic Details
Main Authors: Carabajo Avila, Sthefany Paola, Chimbo Vega, Michelle Giovanna
Other Authors: Astudillo Salinas, Darwin Fabián
Language:spa
Published: Universidad de Cuenca 2023
Subjects:
Online Access:http://dspace.ucuenca.edu.ec/handle/123456789/42918
Description
Summary:El presente proyecto de titulación se enfoca en el estudio y mejora del método de ac- ceso aleatorio en redes 5G, aplicando dos enfoques para la administración dinámica de preámbulos. En este contexto, los usuarios solicitan recursos de enlace ascenden- te mediante la transmisión de preámbulos, los cuales se caracterizan por ser firmas ortogonales. Sin embargo, un problema que se presenta es la posible congestión y colapso de la red cuando múltiples firmas idénticas se transmiten en un corto pe- ríodo de tiempo. El primer método consiste en el uso del aprendizaje supervisado mediante la implementación de una red neuronal que determina una salida ante un conjunto de datos que contienen información sobre los preámbulos que han benefi- ciado previamente al sistema durante pruebas realizadas. La red neuronal procesa esta información y genera salidas que indican qué preámbulos son más adecuados para evitar colapsos y mejorar la probabilidad de acceso exitoso a los recursos de enlace ascendente. El segundo método propuesto implica el uso del aprendizaje re- forzado, que implementa una política para la administración de preámbulos basada en Q-learning. En este enfoque, se emplea una función denominada Q que evalúa las acciones tomadas en estados específicos del sistema. El sistema se retroalimenta continuamente, reforzando aquellas elecciones que benefician al rendimiento del sis- tema y castigando aquellas que lo perjudican. De esta manera, el sistema de acceso aleatorio puede aprender a asignar preámbulos de manera más inteligente y efectiva, adaptándose a las condiciones de la red y optimizando la utilización de los recursos disponibles.