Comprobación de la convergencia de la solución empleando el método de los elementos finitos al analizar una loza plana delgada solicitada con una carga uniformente distribuida con diferentes tipos de apoyos, utilizando como comparación la solución por el método de kalmanok

En este trabajo se realizara el estudio y resolución de placas o losas delgadas mediante el método de las tablas de Kalmanok para compararlo con el Método de los Elementos Finitos y comprobar que a medida que se refine el mallado en el método de los elementos finitos la solución converge a la exacta...

Full description

Bibliographic Details
Main Author: Ochoa García, Santiago Aurelio
Other Authors: Altuzarra Herrera, Gregorio
Format: bachelorThesis
Language:spa
Published: 2014
Subjects:
Online Access:http://dspace.ucuenca.edu.ec/handle/123456789/7513
Description
Summary:En este trabajo se realizara el estudio y resolución de placas o losas delgadas mediante el método de las tablas de Kalmanok para compararlo con el Método de los Elementos Finitos y comprobar que a medida que se refine el mallado en el método de los elementos finitos la solución converge a la exacta. Se resolverá la flecha en el medio de la losa, al igual que sus momentos en direcciones paralelas a los lados de la losa también en el centro de ella, y en el medio de los lados empotrados. Las placas estarán cargadas uniformemente y tendrán diferentes condiciones de apoyo (libremente apoyada en todo su contorno, libremente apoyada en 3 lados y con empotramiento en el cuarto; y finalmente, con empotramiento en 2 lados opuestos y libremente apoyado en los demás). Para el fundamento teorico en este trabajo se necesitará del estudio de las Hipótesis de Kirchhoff y la resolución de la ecuación de la biarmónica mediante el método de la doble serie de Fourier.