Algebraic Reflexivity of Non-Canonical Isometries on Lipschitz Spaces
Let Lip([0,1]) be the Banach space of all Lipschitz complex-valued functions f on [0,1], equipped with one of the norms: ∥f∥σ=|f(0)|+∥f′∥L∞ or ∥f∥m=max{|f(0)|,∥f′∥L∞}, where ∥⋅∥L∞ denotes the essential supremum norm. It is known that the surjective linear isometries of such spaces are integral opera...
Auteurs principaux: | Jiménez-Vargas, Antonio, Ramírez, María Isabel |
---|---|
Format: | info:eu-repo/semantics/article |
Langue: | English |
Publié: |
MDPI
2021
|
Sujets: | |
Accès en ligne: | http://hdl.handle.net/10835/11923 |
Documents similaires
-
Extension of isometries and the Mazur–Ulam property
par: Cueto Avellaneda, María de Nazaret
Publié: (2021) -
Jirí Procháska (1749-1820)
par: Owecki, M.K. (Michal Krzysztof), et autres
Publié: (2020) -
The Distribution Function of a Probability Measure on a Linearly Ordered Topological Space
par: Gálvez Rodríguez, José Fulgencio, et autres
Publié: (2020) -
Constructing a linearly ordered topological space from a fractal structure: a probabilistic approach
par: Gálvez Rodríguez, José Fulgencio, et autres
Publié: (2022) -
An instructional model for guiding reflection and research in the clasroom: the educational situation quality model.
par: Doménech Betoret, Fernando
Publié: (2013)