Diagnosis of Subclinical Keratoconus Based on Machine Learning Techniques
Background: Keratoconus is a non-inflammatory corneal disease characterized by gradual thinning of the stroma, resulting in irreversible visual quality and quantity decline. Early detection of keratoconus and subsequent prevention of possible risks are crucial factors in its progression. Random fore...
Main Authors: | Castro De Luna, Gracia María, Jiménez Rodríguez, Diana, Castaño Fernández, Ana Belén, Pérez Rueda, Antonio |
---|---|
Format: | info:eu-repo/semantics/article |
Language: | English |
Published: |
MDPI
2021
|
Subjects: | |
Online Access: | http://hdl.handle.net/10835/12363 https://doi.org/10.3390/jcm10184281 |
Similar Items
-
Diagnosis of Subclinical Keratoconus with a Combined Model of Biomechanical and Topographic Parameters
by: Pérez-Rueda, Antonio, et al.
Published: (2021) -
Modelos predictivos para el diagnóstico precoz y la limitación visual del queratocono basados en la topografía corneal
by: Pérez Rueda, Antonio
Published: (2021) -
Tree Cover Estimation in Global Drylands from Space Using Deep Learning
by: Guirado Hernández, Emilio, et al.
Published: (2020) -
Identifying the origin of groundwater samples in a multi-layer aquifer system with Random Forest classification
by: Baudron, Paul, et al.
Published: (2024) -
Proyección espacial de la demanda en la Empresa Regional Centrosur C.A, mediante métodos heurísticos
by: Montalvan Delgado, Joel Alejandro, et al.
Published: (2019)