Modelos predictivos bayesianos: Estimación de parámetros en distribuciones de tipo MoTBF a partir de grandes volúmenes de datos

En este trabajo se realiza un estudio sobre las distribuciones de tipo mixtura de funciones base truncadas (MoTBF). Más concretamente, nos centramos en dos de sus casos particulares: las mixturas de exponenciales truncadas (MTEs) y las mixturas de polinomios (MOPs). El objetivo principal de este...

Full description

Bibliographic Details
Main Author: Ortiz Montes, Marina
Other Authors: Salmerón Cerdán, Antonio
Format: info:eu-repo/semantics/doctoralThesis
Language:Spanish / Castilian
Published: 2022
Subjects:
Online Access:http://hdl.handle.net/10835/13174
_version_ 1789407808837386240
author Ortiz Montes, Marina
author2 Salmerón Cerdán, Antonio
author_facet Salmerón Cerdán, Antonio
Ortiz Montes, Marina
author_sort Ortiz Montes, Marina
collection DSpace
description En este trabajo se realiza un estudio sobre las distribuciones de tipo mixtura de funciones base truncadas (MoTBF). Más concretamente, nos centramos en dos de sus casos particulares: las mixturas de exponenciales truncadas (MTEs) y las mixturas de polinomios (MOPs). El objetivo principal de este trabajo es, por un lado, estudiar las propiedades básicas de las distribuciones de tipo MTE y MOP y, por otro lado, desarrollar procedimientos que resuelvan el problema de la estimación de parámetros en dichas distribuciones a partir de grandes volúmenes de datos. Comenzamos motivando la aparición de los modelos de tipo MoTBF a través de una breve reseña histórica en el capítulo 1. En este capítulo, también presentamos la notación necesaria para el posterior desarrollo del trabajo, así como una introducción general a las redes bayesianas híbridas, que constituyen el principal marco en el cual los modelos de tipo MoTBF adquieren una importancia fundamental. A continuación, en el capítulo 2, se introduce ya el modelo MoTBF; primero, mediante sus dos casos particulares, a saber: el modelo MTE y el modelo MOP, y luego, de forma genérica. Para ello, presentamos, en cada caso, la definición tanto de las distribuciones univariantes como de las condicionadas. Posteriormente, se lleva a cabo un estudio acerca de las propiedades básicas de las distribuciones univariantes de tipo MTE y MOP. Finalizamos este capítulo ilustrando con ejemplos las propiedades obtenidas anteriormente. En el capítulo 3, se aborda la segunda cuestión objeto de este trabajo, esto es, el estudio del problema de la estimación de parámetros en distribuciones de tipo MoTBF a partir de grandes volúmenes de datos. Para ello, consideramos como posibles soluciones el método de máxima verosimilitud (exacto), el método de Fisher Scoring, que es un método numérico para determinar de forma aproximada el estimador de máxima verosimilitud y, por último, el método de mínimos cuadrados. Para cada uno de dichos métodos, examinamos su aplicación a distribuciones de tipo MTE y MOP univariantes, exceptuando el caso del método de Fisher Scoring para el cual se prescinde del estudio para MTEs. Después, en el capítulo 4, realizamos un análisis experimental de los métodos anteriormente desarrollados, centrándonos principalmente en el algoritmo de Fisher Scoring, a fin de estudiar su comportamiento en cuanto a la estimación de parámetros en distribuciones univariantes de tipo MOP a partir de grandes volúmenes de datos. Para dicho análisis, se hace uso del software R, a través de la implementación en esta herramienta del algoritmo mencionado, la cual incluimos en el apéndice A. Finalmente, en el capítulo 5 se exponen las conclusiones del presente trabajo.
format info:eu-repo/semantics/doctoralThesis
id oai:repositorio.ual.es:10835-13174
institution Universidad de Cuenca
language Spanish / Castilian
publishDate 2022
record_format dspace
spelling oai:repositorio.ual.es:10835-131742023-04-13T00:17:35Z Modelos predictivos bayesianos: Estimación de parámetros en distribuciones de tipo MoTBF a partir de grandes volúmenes de datos Bayesian predictive models: Estimation of parameters in MoTBF-type distributions from large volumes of data Ortiz Montes, Marina Salmerón Cerdán, Antonio Trabajo Fin de Grado de la Universidad de Almería Mixturas de exponenciales truncadas (MTEs) Mixturas de polinomios (MOPs) MoTBF Método de Fisher Scoring En este trabajo se realiza un estudio sobre las distribuciones de tipo mixtura de funciones base truncadas (MoTBF). Más concretamente, nos centramos en dos de sus casos particulares: las mixturas de exponenciales truncadas (MTEs) y las mixturas de polinomios (MOPs). El objetivo principal de este trabajo es, por un lado, estudiar las propiedades básicas de las distribuciones de tipo MTE y MOP y, por otro lado, desarrollar procedimientos que resuelvan el problema de la estimación de parámetros en dichas distribuciones a partir de grandes volúmenes de datos. Comenzamos motivando la aparición de los modelos de tipo MoTBF a través de una breve reseña histórica en el capítulo 1. En este capítulo, también presentamos la notación necesaria para el posterior desarrollo del trabajo, así como una introducción general a las redes bayesianas híbridas, que constituyen el principal marco en el cual los modelos de tipo MoTBF adquieren una importancia fundamental. A continuación, en el capítulo 2, se introduce ya el modelo MoTBF; primero, mediante sus dos casos particulares, a saber: el modelo MTE y el modelo MOP, y luego, de forma genérica. Para ello, presentamos, en cada caso, la definición tanto de las distribuciones univariantes como de las condicionadas. Posteriormente, se lleva a cabo un estudio acerca de las propiedades básicas de las distribuciones univariantes de tipo MTE y MOP. Finalizamos este capítulo ilustrando con ejemplos las propiedades obtenidas anteriormente. En el capítulo 3, se aborda la segunda cuestión objeto de este trabajo, esto es, el estudio del problema de la estimación de parámetros en distribuciones de tipo MoTBF a partir de grandes volúmenes de datos. Para ello, consideramos como posibles soluciones el método de máxima verosimilitud (exacto), el método de Fisher Scoring, que es un método numérico para determinar de forma aproximada el estimador de máxima verosimilitud y, por último, el método de mínimos cuadrados. Para cada uno de dichos métodos, examinamos su aplicación a distribuciones de tipo MTE y MOP univariantes, exceptuando el caso del método de Fisher Scoring para el cual se prescinde del estudio para MTEs. Después, en el capítulo 4, realizamos un análisis experimental de los métodos anteriormente desarrollados, centrándonos principalmente en el algoritmo de Fisher Scoring, a fin de estudiar su comportamiento en cuanto a la estimación de parámetros en distribuciones univariantes de tipo MOP a partir de grandes volúmenes de datos. Para dicho análisis, se hace uso del software R, a través de la implementación en esta herramienta del algoritmo mencionado, la cual incluimos en el apéndice A. Finalmente, en el capítulo 5 se exponen las conclusiones del presente trabajo. 2022-02-01T09:12:15Z 2022-02-01T09:12:15Z 2021-07 info:eu-repo/semantics/doctoralThesis http://hdl.handle.net/10835/13174 es Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess
spellingShingle Trabajo Fin de Grado de la Universidad de Almería
Mixturas de exponenciales truncadas (MTEs)
Mixturas de polinomios (MOPs)
MoTBF
Método de Fisher Scoring
Ortiz Montes, Marina
Modelos predictivos bayesianos: Estimación de parámetros en distribuciones de tipo MoTBF a partir de grandes volúmenes de datos
title Modelos predictivos bayesianos: Estimación de parámetros en distribuciones de tipo MoTBF a partir de grandes volúmenes de datos
title_full Modelos predictivos bayesianos: Estimación de parámetros en distribuciones de tipo MoTBF a partir de grandes volúmenes de datos
title_fullStr Modelos predictivos bayesianos: Estimación de parámetros en distribuciones de tipo MoTBF a partir de grandes volúmenes de datos
title_full_unstemmed Modelos predictivos bayesianos: Estimación de parámetros en distribuciones de tipo MoTBF a partir de grandes volúmenes de datos
title_short Modelos predictivos bayesianos: Estimación de parámetros en distribuciones de tipo MoTBF a partir de grandes volúmenes de datos
title_sort modelos predictivos bayesianos: estimación de parámetros en distribuciones de tipo motbf a partir de grandes volúmenes de datos
topic Trabajo Fin de Grado de la Universidad de Almería
Mixturas de exponenciales truncadas (MTEs)
Mixturas de polinomios (MOPs)
MoTBF
Método de Fisher Scoring
url http://hdl.handle.net/10835/13174
work_keys_str_mv AT ortizmontesmarina modelospredictivosbayesianosestimaciondeparametrosendistribucionesdetipomotbfapartirdegrandesvolumenesdedatos
AT ortizmontesmarina bayesianpredictivemodelsestimationofparametersinmotbftypedistributionsfromlargevolumesofdata