Caracterización, modelización y predicción a corto plazo de la producción de la potencia de una planta fotovoltaica, utilizando cámara de cielo y Técnica de Inteligencia Artificial
Main Author: | |
---|---|
Other Authors: | |
Format: | info:eu-repo/semantics/doctoralThesis |
Language: | Spanish / Castilian |
Published: |
2022
|
Subjects: | |
Online Access: | http://hdl.handle.net/10835/14027 |
_version_ | 1789407639715708928 |
---|---|
author | Trigo Gonzalez, Mauricio |
author2 | Batlles Garrido, Francisco Javier |
author_facet | Batlles Garrido, Francisco Javier Trigo Gonzalez, Mauricio |
author_sort | Trigo Gonzalez, Mauricio |
collection | DSpace |
description | |
format | info:eu-repo/semantics/doctoralThesis |
id | oai:repositorio.ual.es:10835-14027 |
institution | Universidad de Cuenca |
language | Spanish / Castilian |
publishDate | 2022 |
record_format | dspace |
spelling | oai:repositorio.ual.es:10835-140272023-04-12T23:18:52Z Caracterización, modelización y predicción a corto plazo de la producción de la potencia de una planta fotovoltaica, utilizando cámara de cielo y Técnica de Inteligencia Artificial Characterization, modeling, and short-term prediction of the power output of a photovoltaic plant, using sky camara and Artificial Intelligence Technique Trigo Gonzalez, Mauricio Batlles Garrido, Francisco Javier Alonso Montesinos, Joaquín Blas Marzo Rosa, Aitor José Forecasting Machine Learning Artificial Neural Network Support Vector Machine La energía solar fotovoltaica (FV) es la tecnología para la generación eléctrica que presenta un mayor crecimiento desde el año 2002, experimentando un incremento medio anual del 48%. La predicción del recurso solar para una planta FV conectada a la red, es absolutamente necesaria para asegurar una captura y transformación óptima de la energía solar disponible y una producción confiable de potencia. El desarrollo de métodos de predicción a corto plazo de la producción de las plantas es particularmente importante debido a su creciente incorporación a las redes eléctricas y a la variabilidad del recurso solar, debido principalmente a los fenómenos transitorios originados por la alternancia de nubes y claros. La acumulación de suciedad en la superficie de los módulos fotovoltaicos tiene un impacto notable en la producción de una instalación fotovoltaica. Este fenómeno, más conocido por el término anglosajón "soiling" está íntimamente relacionado con el ángulo de inclinación del panel y las condiciones meteorológicas, como son la cantidad de aerosoles presentes en la atmósfera, humedad relativa, velocidad y dirección del viento y precipitación. El objetivo fundamental del presente proyecto de tesis doctoral es desarrollar una metodología capaz de predecir a corto plazo, de una a tres horas, la producción de una planta fotovoltaica, incluyendo las pérdidas por soiling. Dicha metodología está basada en tratamiento de imágenes y técnicas de aprendizaje supervisado, como son las Redes Neuronales Artificiales. Doctorado en Ciencias Aplicadas al Medio Ambiente (RD99/11) (8904 2022-10-19T08:53:51Z 2022-10-19T08:53:51Z 2022-10-19 2022-11-09 info:eu-repo/semantics/doctoralThesis http://hdl.handle.net/10835/14027 es info:eu-repo/semantics/openAccess |
spellingShingle | Forecasting Machine Learning Artificial Neural Network Support Vector Machine Trigo Gonzalez, Mauricio Caracterización, modelización y predicción a corto plazo de la producción de la potencia de una planta fotovoltaica, utilizando cámara de cielo y Técnica de Inteligencia Artificial |
title | Caracterización, modelización y predicción a corto plazo de la producción de la potencia de una planta fotovoltaica, utilizando cámara de cielo y Técnica de Inteligencia Artificial |
title_full | Caracterización, modelización y predicción a corto plazo de la producción de la potencia de una planta fotovoltaica, utilizando cámara de cielo y Técnica de Inteligencia Artificial |
title_fullStr | Caracterización, modelización y predicción a corto plazo de la producción de la potencia de una planta fotovoltaica, utilizando cámara de cielo y Técnica de Inteligencia Artificial |
title_full_unstemmed | Caracterización, modelización y predicción a corto plazo de la producción de la potencia de una planta fotovoltaica, utilizando cámara de cielo y Técnica de Inteligencia Artificial |
title_short | Caracterización, modelización y predicción a corto plazo de la producción de la potencia de una planta fotovoltaica, utilizando cámara de cielo y Técnica de Inteligencia Artificial |
title_sort | caracterización, modelización y predicción a corto plazo de la producción de la potencia de una planta fotovoltaica, utilizando cámara de cielo y técnica de inteligencia artificial |
topic | Forecasting Machine Learning Artificial Neural Network Support Vector Machine |
url | http://hdl.handle.net/10835/14027 |
work_keys_str_mv | AT trigogonzalezmauricio caracterizacionmodelizacionyprediccionacortoplazodelaproducciondelapotenciadeunaplantafotovoltaicautilizandocamaradecieloytecnicadeinteligenciaartificial AT trigogonzalezmauricio characterizationmodelingandshorttermpredictionofthepoweroutputofaphotovoltaicplantusingskycamaraandartificialintelligencetechnique |