Constructing a linearly ordered topological space from a fractal structure: a probabilistic approach
Recent studies have shown that it is possible to construct a probability measure from a fractal structure defined on a space. On the other hand, a theory on cumulative distribution functions from an order on a separable linearly ordered topological space has been developed. In this paper, we show ho...
Hlavní autoři: | Gálvez Rodríguez, José Fulgencio, Sánchez-Granero, Miguel Ángel |
---|---|
Médium: | info:eu-repo/semantics/article |
Jazyk: | English |
Vydáno: |
2022
|
Témata: | |
On-line přístup: | http://hdl.handle.net/10835/14101 |
Podobné jednotky
-
The Distribution Function of a Probability Measure on a Linearly Ordered Topological Space
Autor: Gálvez Rodríguez, José Fulgencio, a další
Vydáno: (2020) -
Calculating Hausdorff Dimension in Higher Dimensional Spaces
Autor: Fernández Martínez, Manuel, a další
Vydáno: (2020) -
Preservation of extreme points
Autor: Mena-Jurado, Juan Francisco, a další
Vydáno: (2022) -
Construction of Fuzzy Measures over Product Spaces
Autor: Reche Lorite, Fernando, a další
Vydáno: (2020) -
Statistical convergence in strong topology of probabilistic normed spaces
Autor: Lafuerza Guillén, Bernardo, a další
Vydáno: (2014)