Constructing a linearly ordered topological space from a fractal structure: a probabilistic approach
Recent studies have shown that it is possible to construct a probability measure from a fractal structure defined on a space. On the other hand, a theory on cumulative distribution functions from an order on a separable linearly ordered topological space has been developed. In this paper, we show ho...
Auteurs principaux: | Gálvez Rodríguez, José Fulgencio, Sánchez-Granero, Miguel Ángel |
---|---|
Format: | info:eu-repo/semantics/article |
Langue: | English |
Publié: |
2022
|
Sujets: | |
Accès en ligne: | http://hdl.handle.net/10835/14101 |
Documents similaires
-
The Distribution Function of a Probability Measure on a Linearly Ordered Topological Space
par: Gálvez Rodríguez, José Fulgencio, et autres
Publié: (2020) -
Calculating Hausdorff Dimension in Higher Dimensional Spaces
par: Fernández Martínez, Manuel, et autres
Publié: (2020) -
Preservation of extreme points
par: Mena-Jurado, Juan Francisco, et autres
Publié: (2022) -
Construction of Fuzzy Measures over Product Spaces
par: Reche Lorite, Fernando, et autres
Publié: (2020) -
Statistical convergence in strong topology of probabilistic normed spaces
par: Lafuerza Guillén, Bernardo, et autres
Publié: (2014)