MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
This paper introduces MoTBFs, an R package for manipulating mixtures of truncated basis functions. This class of functions allows the representation of joint probability distributions involving discrete and continuous variables simultaneously, and includes mixtures of truncated exponentials and mixt...
Autores principales: | Maldonado González, Ana Devaki, Salmerón Cerdán, Antonio, Pérez Bernabé, Inmaculada, Nielsen, Thomas Dyhre |
---|---|
Formato: | info:eu-repo/semantics/article |
Lenguaje: | English |
Publicado: |
The R Foundation
2023
|
Acceso en línea: | http://hdl.handle.net/10835/14822 |
Ejemplares similares
-
Mixtures of Truncated Basis Functions
por: Langseth, Helge, et al.
Publicado: (2017) -
Learning Mixtures of Truncated Basis Functions from Data
por: Langseth, Helge, et al.
Publicado: (2017) -
Learning Conditional Distributions using Mixtures of Truncated Basis Functions
por: Pérez-Bernabé, Inmaculada, et al.
Publicado: (2017) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
por: Romero, Vanessa, et al.
Publicado: (2017) -
Structural Learning of Bayesian Networks with Mixtures of Truncated Exponentials
por: Romero, Vanessa, et al.
Publicado: (2012)