MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
This paper introduces MoTBFs, an R package for manipulating mixtures of truncated basis functions. This class of functions allows the representation of joint probability distributions involving discrete and continuous variables simultaneously, and includes mixtures of truncated exponentials and mixt...
Päätekijät: | Maldonado González, Ana Devaki, Salmerón Cerdán, Antonio, Pérez Bernabé, Inmaculada, Nielsen, Thomas Dyhre |
---|---|
Aineistotyyppi: | info:eu-repo/semantics/article |
Kieli: | English |
Julkaistu: |
The R Foundation
2023
|
Linkit: | http://hdl.handle.net/10835/14822 |
Samankaltaisia teoksia
-
Mixtures of Truncated Basis Functions
Tekijä: Langseth, Helge, et al.
Julkaistu: (2017) -
Learning Mixtures of Truncated Basis Functions from Data
Tekijä: Langseth, Helge, et al.
Julkaistu: (2017) -
Learning Conditional Distributions using Mixtures of Truncated Basis Functions
Tekijä: Pérez-Bernabé, Inmaculada, et al.
Julkaistu: (2017) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
Tekijä: Romero, Vanessa, et al.
Julkaistu: (2017) -
Structural Learning of Bayesian Networks with Mixtures of Truncated Exponentials
Tekijä: Romero, Vanessa, et al.
Julkaistu: (2012)