MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
This paper introduces MoTBFs, an R package for manipulating mixtures of truncated basis functions. This class of functions allows the representation of joint probability distributions involving discrete and continuous variables simultaneously, and includes mixtures of truncated exponentials and mixt...
Autori principali: | Maldonado González, Ana Devaki, Salmerón Cerdán, Antonio, Pérez Bernabé, Inmaculada, Nielsen, Thomas Dyhre |
---|---|
Natura: | info:eu-repo/semantics/article |
Lingua: | English |
Pubblicazione: |
The R Foundation
2023
|
Accesso online: | http://hdl.handle.net/10835/14822 |
Documenti analoghi
Documenti analoghi
-
Mixtures of Truncated Basis Functions
di: Langseth, Helge, et al.
Pubblicazione: (2017) -
Learning Mixtures of Truncated Basis Functions from Data
di: Langseth, Helge, et al.
Pubblicazione: (2017) -
Learning Conditional Distributions using Mixtures of Truncated Basis Functions
di: Pérez-Bernabé, Inmaculada, et al.
Pubblicazione: (2017) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
di: Romero, Vanessa, et al.
Pubblicazione: (2017) -
Structural Learning of Bayesian Networks with Mixtures of Truncated Exponentials
di: Romero, Vanessa, et al.
Pubblicazione: (2012)