MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
This paper introduces MoTBFs, an R package for manipulating mixtures of truncated basis functions. This class of functions allows the representation of joint probability distributions involving discrete and continuous variables simultaneously, and includes mixtures of truncated exponentials and mixt...
主要な著者: | Maldonado González, Ana Devaki, Salmerón Cerdán, Antonio, Pérez Bernabé, Inmaculada, Nielsen, Thomas Dyhre |
---|---|
フォーマット: | info:eu-repo/semantics/article |
言語: | English |
出版事項: |
The R Foundation
2023
|
オンライン・アクセス: | http://hdl.handle.net/10835/14822 |
類似資料
-
Mixtures of Truncated Basis Functions
著者:: Langseth, Helge, 等
出版事項: (2017) -
Learning Mixtures of Truncated Basis Functions from Data
著者:: Langseth, Helge, 等
出版事項: (2017) -
Learning Conditional Distributions using Mixtures of Truncated Basis Functions
著者:: Pérez-Bernabé, Inmaculada, 等
出版事項: (2017) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
著者:: Romero, Vanessa, 等
出版事項: (2017) -
Structural Learning of Bayesian Networks with Mixtures of Truncated Exponentials
著者:: Romero, Vanessa, 等
出版事項: (2012)