MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
This paper introduces MoTBFs, an R package for manipulating mixtures of truncated basis functions. This class of functions allows the representation of joint probability distributions involving discrete and continuous variables simultaneously, and includes mixtures of truncated exponentials and mixt...
Hoofdauteurs: | Maldonado González, Ana Devaki, Salmerón Cerdán, Antonio, Pérez Bernabé, Inmaculada, Nielsen, Thomas Dyhre |
---|---|
Formaat: | info:eu-repo/semantics/article |
Taal: | English |
Gepubliceerd in: |
The R Foundation
2023
|
Online toegang: | http://hdl.handle.net/10835/14822 |
Gelijkaardige items
-
Mixtures of Truncated Basis Functions
door: Langseth, Helge, et al.
Gepubliceerd in: (2017) -
Learning Mixtures of Truncated Basis Functions from Data
door: Langseth, Helge, et al.
Gepubliceerd in: (2017) -
Learning Conditional Distributions using Mixtures of Truncated Basis Functions
door: Pérez-Bernabé, Inmaculada, et al.
Gepubliceerd in: (2017) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
door: Romero, Vanessa, et al.
Gepubliceerd in: (2017) -
Structural Learning of Bayesian Networks with Mixtures of Truncated Exponentials
door: Romero, Vanessa, et al.
Gepubliceerd in: (2012)