MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
This paper introduces MoTBFs, an R package for manipulating mixtures of truncated basis functions. This class of functions allows the representation of joint probability distributions involving discrete and continuous variables simultaneously, and includes mixtures of truncated exponentials and mixt...
Главные авторы: | Maldonado González, Ana Devaki, Salmerón Cerdán, Antonio, Pérez Bernabé, Inmaculada, Nielsen, Thomas Dyhre |
---|---|
Формат: | info:eu-repo/semantics/article |
Язык: | English |
Опубликовано: |
The R Foundation
2023
|
Online-ссылка: | http://hdl.handle.net/10835/14822 |
Схожие документы
-
Mixtures of Truncated Basis Functions
по: Langseth, Helge, и др.
Опубликовано: (2017) -
Learning Mixtures of Truncated Basis Functions from Data
по: Langseth, Helge, и др.
Опубликовано: (2017) -
Learning Conditional Distributions using Mixtures of Truncated Basis Functions
по: Pérez-Bernabé, Inmaculada, и др.
Опубликовано: (2017) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
по: Romero, Vanessa, и др.
Опубликовано: (2017) -
Structural Learning of Bayesian Networks with Mixtures of Truncated Exponentials
по: Romero, Vanessa, и др.
Опубликовано: (2012)