MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
This paper introduces MoTBFs, an R package for manipulating mixtures of truncated basis functions. This class of functions allows the representation of joint probability distributions involving discrete and continuous variables simultaneously, and includes mixtures of truncated exponentials and mixt...
Main Authors: | Maldonado González, Ana Devaki, Salmerón Cerdán, Antonio, Pérez Bernabé, Inmaculada, Nielsen, Thomas Dyhre |
---|---|
格式: | info:eu-repo/semantics/article |
语言: | English |
出版: |
The R Foundation
2023
|
在线阅读: | http://hdl.handle.net/10835/14822 |
相似书籍
-
Mixtures of Truncated Basis Functions
由: Langseth, Helge, et al.
出版: (2017) -
Learning Mixtures of Truncated Basis Functions from Data
由: Langseth, Helge, et al.
出版: (2017) -
Learning Conditional Distributions using Mixtures of Truncated Basis Functions
由: Pérez-Bernabé, Inmaculada, et al.
出版: (2017) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
由: Romero, Vanessa, et al.
出版: (2017) -
Structural Learning of Bayesian Networks with Mixtures of Truncated Exponentials
由: Romero, Vanessa, et al.
出版: (2012)