Distribution function estimation with calibration on principal components

The calibration method is a convenient means of incorporating auxiliary information when several parameters must be estimated. This approach has recently been used to develop new estimators for the distribution function. However, the auxiliary information available may generate a large dataset, prov...

ver descrição completa

Detalhes bibliográficos
Principais autores: Martínez Puertas, Sergio, Illescas Manzano, María Dolores, Rueda García, María del Mar
Formato: info:eu-repo/semantics/article
Idioma:English
Publicado em: 2023
Acesso em linha:http://hdl.handle.net/10835/14845
https://doi.org/10.1016/j.cam.2023.115189
_version_ 1789406658440462336
author Martínez Puertas, Sergio
Illescas Manzano, María Dolores
Rueda García, María del Mar
author_facet Martínez Puertas, Sergio
Illescas Manzano, María Dolores
Rueda García, María del Mar
author_sort Martínez Puertas, Sergio
collection DSpace
description The calibration method is a convenient means of incorporating auxiliary information when several parameters must be estimated. This approach has recently been used to develop new estimators for the distribution function. However, the auxiliary information available may generate a large dataset, provoking a loss of efficiency in the estimators obtained, due to over-calibration. We propose adapting the calibration using principal components, in order to avoid the negative consequences of over-calibration when estimating the distribution function.
format info:eu-repo/semantics/article
id oai:repositorio.ual.es:10835-14845
institution Universidad de Cuenca
language English
publishDate 2023
record_format dspace
spelling oai:repositorio.ual.es:10835-148452023-12-21T13:36:42Z Distribution function estimation with calibration on principal components Martínez Puertas, Sergio Illescas Manzano, María Dolores Rueda García, María del Mar The calibration method is a convenient means of incorporating auxiliary information when several parameters must be estimated. This approach has recently been used to develop new estimators for the distribution function. However, the auxiliary information available may generate a large dataset, provoking a loss of efficiency in the estimators obtained, due to over-calibration. We propose adapting the calibration using principal components, in order to avoid the negative consequences of over-calibration when estimating the distribution function. 2023-12-19T09:35:19Z 2023-12-19T09:35:19Z 2023-11-03 info:eu-repo/semantics/article 1879-1778 http://hdl.handle.net/10835/14845 https://doi.org/10.1016/j.cam.2023.115189 en https://doi.org/10.1016/j.cam.2023.115189 Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess
spellingShingle Martínez Puertas, Sergio
Illescas Manzano, María Dolores
Rueda García, María del Mar
Distribution function estimation with calibration on principal components
title Distribution function estimation with calibration on principal components
title_full Distribution function estimation with calibration on principal components
title_fullStr Distribution function estimation with calibration on principal components
title_full_unstemmed Distribution function estimation with calibration on principal components
title_short Distribution function estimation with calibration on principal components
title_sort distribution function estimation with calibration on principal components
url http://hdl.handle.net/10835/14845
https://doi.org/10.1016/j.cam.2023.115189
work_keys_str_mv AT martinezpuertassergio distributionfunctionestimationwithcalibrationonprincipalcomponents
AT illescasmanzanomariadolores distributionfunctionestimationwithcalibrationonprincipalcomponents
AT ruedagarciamariadelmar distributionfunctionestimationwithcalibrationonprincipalcomponents