Estimating the proportion of a categorical variable with probit regression

This paper discusses the estimation of a population proportion, using the auxiliary information available, which is incorporated into the estimation procedure by a probit model fit. Three probit regression estimators are considered, using model-based and model-assisted approaches. The theoretical pr...

Full description

Bibliographic Details
Main Authors: Martínez Puertas, Sergio, Arcos Cebrián, Antonio, Rueda García, María del Mar, Martínez Puertas, Helena
Format: info:eu-repo/semantics/article
Language:English
Published: 2023
Subjects:
Online Access:http://hdl.handle.net/10835/14878
https://doi.org/10.1177/0049124118761771
_version_ 1789406341371002880
author Martínez Puertas, Sergio
Arcos Cebrián, Antonio
Rueda García, María del Mar
Martínez Puertas, Helena
author_facet Martínez Puertas, Sergio
Arcos Cebrián, Antonio
Rueda García, María del Mar
Martínez Puertas, Helena
author_sort Martínez Puertas, Sergio
collection DSpace
description This paper discusses the estimation of a population proportion, using the auxiliary information available, which is incorporated into the estimation procedure by a probit model fit. Three probit regression estimators are considered, using model-based and model-assisted approaches. The theoretical properties of the proposed estimators are derived and discussed. Monte Carlo experiments were carried out for simulated data and for real data taken from a database of confirmed dengue cases in Mexico. The probit estimates gives valuable results in comparison to alternative estimators. Finally, the proposed methodology is applied to data obtained from an immigration survey.
format info:eu-repo/semantics/article
id oai:repositorio.ual.es:10835-14878
institution Universidad de Cuenca
language English
publishDate 2023
record_format dspace
spelling oai:repositorio.ual.es:10835-148782023-12-21T13:31:59Z Estimating the proportion of a categorical variable with probit regression Martínez Puertas, Sergio Arcos Cebrián, Antonio Rueda García, María del Mar Martínez Puertas, Helena Auxiliary information Calibration estimator Probit Regression Fi- nite population Sampling design This paper discusses the estimation of a population proportion, using the auxiliary information available, which is incorporated into the estimation procedure by a probit model fit. Three probit regression estimators are considered, using model-based and model-assisted approaches. The theoretical properties of the proposed estimators are derived and discussed. Monte Carlo experiments were carried out for simulated data and for real data taken from a database of confirmed dengue cases in Mexico. The probit estimates gives valuable results in comparison to alternative estimators. Finally, the proposed methodology is applied to data obtained from an immigration survey. 2023-12-21T12:31:22Z 2023-12-21T12:31:22Z 2018-03-08 info:eu-repo/semantics/article 0049-1241 http://hdl.handle.net/10835/14878 https://doi.org/10.1177/0049124118761771 en https://doi.org/10.1177/0049124118761771 Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess
spellingShingle Auxiliary information
Calibration estimator
Probit Regression
Fi- nite population
Sampling design
Martínez Puertas, Sergio
Arcos Cebrián, Antonio
Rueda García, María del Mar
Martínez Puertas, Helena
Estimating the proportion of a categorical variable with probit regression
title Estimating the proportion of a categorical variable with probit regression
title_full Estimating the proportion of a categorical variable with probit regression
title_fullStr Estimating the proportion of a categorical variable with probit regression
title_full_unstemmed Estimating the proportion of a categorical variable with probit regression
title_short Estimating the proportion of a categorical variable with probit regression
title_sort estimating the proportion of a categorical variable with probit regression
topic Auxiliary information
Calibration estimator
Probit Regression
Fi- nite population
Sampling design
url http://hdl.handle.net/10835/14878
https://doi.org/10.1177/0049124118761771
work_keys_str_mv AT martinezpuertassergio estimatingtheproportionofacategoricalvariablewithprobitregression
AT arcoscebrianantonio estimatingtheproportionofacategoricalvariablewithprobitregression
AT ruedagarciamariadelmar estimatingtheproportionofacategoricalvariablewithprobitregression
AT martinezpuertashelena estimatingtheproportionofacategoricalvariablewithprobitregression