Estimating the proportion of a categorical variable with probit regression
This paper discusses the estimation of a population proportion, using the auxiliary information available, which is incorporated into the estimation procedure by a probit model fit. Three probit regression estimators are considered, using model-based and model-assisted approaches. The theoretical pr...
Main Authors: | , , , |
---|---|
Format: | info:eu-repo/semantics/article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | http://hdl.handle.net/10835/14878 https://doi.org/10.1177/0049124118761771 |
_version_ | 1789406341371002880 |
---|---|
author | Martínez Puertas, Sergio Arcos Cebrián, Antonio Rueda García, María del Mar Martínez Puertas, Helena |
author_facet | Martínez Puertas, Sergio Arcos Cebrián, Antonio Rueda García, María del Mar Martínez Puertas, Helena |
author_sort | Martínez Puertas, Sergio |
collection | DSpace |
description | This paper discusses the estimation of a population proportion, using the auxiliary information available, which is incorporated into the estimation procedure by a probit model fit. Three probit regression estimators are considered, using model-based and model-assisted approaches. The theoretical properties of the proposed estimators are derived and discussed. Monte Carlo experiments were carried out for simulated data and for real data taken from a database of confirmed dengue cases in Mexico. The probit estimates gives valuable results in comparison to alternative estimators. Finally, the proposed methodology is applied to data obtained from an immigration survey. |
format | info:eu-repo/semantics/article |
id | oai:repositorio.ual.es:10835-14878 |
institution | Universidad de Cuenca |
language | English |
publishDate | 2023 |
record_format | dspace |
spelling | oai:repositorio.ual.es:10835-148782023-12-21T13:31:59Z Estimating the proportion of a categorical variable with probit regression Martínez Puertas, Sergio Arcos Cebrián, Antonio Rueda García, María del Mar Martínez Puertas, Helena Auxiliary information Calibration estimator Probit Regression Fi- nite population Sampling design This paper discusses the estimation of a population proportion, using the auxiliary information available, which is incorporated into the estimation procedure by a probit model fit. Three probit regression estimators are considered, using model-based and model-assisted approaches. The theoretical properties of the proposed estimators are derived and discussed. Monte Carlo experiments were carried out for simulated data and for real data taken from a database of confirmed dengue cases in Mexico. The probit estimates gives valuable results in comparison to alternative estimators. Finally, the proposed methodology is applied to data obtained from an immigration survey. 2023-12-21T12:31:22Z 2023-12-21T12:31:22Z 2018-03-08 info:eu-repo/semantics/article 0049-1241 http://hdl.handle.net/10835/14878 https://doi.org/10.1177/0049124118761771 en https://doi.org/10.1177/0049124118761771 Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
spellingShingle | Auxiliary information Calibration estimator Probit Regression Fi- nite population Sampling design Martínez Puertas, Sergio Arcos Cebrián, Antonio Rueda García, María del Mar Martínez Puertas, Helena Estimating the proportion of a categorical variable with probit regression |
title | Estimating the proportion of a categorical variable with probit regression |
title_full | Estimating the proportion of a categorical variable with probit regression |
title_fullStr | Estimating the proportion of a categorical variable with probit regression |
title_full_unstemmed | Estimating the proportion of a categorical variable with probit regression |
title_short | Estimating the proportion of a categorical variable with probit regression |
title_sort | estimating the proportion of a categorical variable with probit regression |
topic | Auxiliary information Calibration estimator Probit Regression Fi- nite population Sampling design |
url | http://hdl.handle.net/10835/14878 https://doi.org/10.1177/0049124118761771 |
work_keys_str_mv | AT martinezpuertassergio estimatingtheproportionofacategoricalvariablewithprobitregression AT arcoscebrianantonio estimatingtheproportionofacategoricalvariablewithprobitregression AT ruedagarciamariadelmar estimatingtheproportionofacategoricalvariablewithprobitregression AT martinezpuertashelena estimatingtheproportionofacategoricalvariablewithprobitregression |