Best-possible bounds on the set of copulas with a given value of Spearman's footrule

In this paper we find pointwise best-possible bounds on the set of copulas with a given value of the Spearman’s footrule co-efficient. We show that the lower bound is always a copula but, unlike the bounds on sets of copulas with a given value of other measures, such as Kendall’s tau, Spearman’s rho...

Full description

Bibliographic Details
Main Authors: Beliakov, Gleb, Amo Artero, Enrique de, Fernández Sánchez, Juan, Úbeda Flores, Manuel
Format: info:eu-repo/semantics/article
Language:English
Published: 2023
Subjects:
Online Access:https://www.sciencedirect.com/science/article/abs/pii/S0165011420304553
http://hdl.handle.net/10835/14923
_version_ 1789406681334022144
author Beliakov, Gleb
Amo Artero, Enrique de
Fernández Sánchez, Juan
Úbeda Flores, Manuel
author_facet Beliakov, Gleb
Amo Artero, Enrique de
Fernández Sánchez, Juan
Úbeda Flores, Manuel
author_sort Beliakov, Gleb
collection DSpace
description In this paper we find pointwise best-possible bounds on the set of copulas with a given value of the Spearman’s footrule co-efficient. We show that the lower bound is always a copula but, unlike the bounds on sets of copulas with a given value of other measures, such as Kendall’s tau, Spearman’s rho and Blonqvist’s beta, the upper bound can be a copula or a proper quasi-copula. We characterised both of these cases.
format info:eu-repo/semantics/article
id oai:repositorio.ual.es:10835-14923
institution Universidad de Cuenca
language English
publishDate 2023
record_format dspace
spelling oai:repositorio.ual.es:10835-149232023-12-22T11:51:41Z Best-possible bounds on the set of copulas with a given value of Spearman's footrule Beliakov, Gleb Amo Artero, Enrique de Fernández Sánchez, Juan Úbeda Flores, Manuel Bounds Copula Lipschitz condition Quasi-copula Spearman’s footrule In this paper we find pointwise best-possible bounds on the set of copulas with a given value of the Spearman’s footrule co-efficient. We show that the lower bound is always a copula but, unlike the bounds on sets of copulas with a given value of other measures, such as Kendall’s tau, Spearman’s rho and Blonqvist’s beta, the upper bound can be a copula or a proper quasi-copula. We characterised both of these cases. 2023-12-22T11:51:41Z 2023-12-22T11:51:41Z 2022 info:eu-repo/semantics/article 0165-0114 https://www.sciencedirect.com/science/article/abs/pii/S0165011420304553 http://hdl.handle.net/10835/14923 10.1016/j.fss.2020.11.011 en Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess
spellingShingle Bounds
Copula
Lipschitz condition
Quasi-copula
Spearman’s footrule
Beliakov, Gleb
Amo Artero, Enrique de
Fernández Sánchez, Juan
Úbeda Flores, Manuel
Best-possible bounds on the set of copulas with a given value of Spearman's footrule
title Best-possible bounds on the set of copulas with a given value of Spearman's footrule
title_full Best-possible bounds on the set of copulas with a given value of Spearman's footrule
title_fullStr Best-possible bounds on the set of copulas with a given value of Spearman's footrule
title_full_unstemmed Best-possible bounds on the set of copulas with a given value of Spearman's footrule
title_short Best-possible bounds on the set of copulas with a given value of Spearman's footrule
title_sort best-possible bounds on the set of copulas with a given value of spearman's footrule
topic Bounds
Copula
Lipschitz condition
Quasi-copula
Spearman’s footrule
url https://www.sciencedirect.com/science/article/abs/pii/S0165011420304553
http://hdl.handle.net/10835/14923
work_keys_str_mv AT beliakovgleb bestpossibleboundsonthesetofcopulaswithagivenvalueofspearmansfootrule
AT amoarteroenriquede bestpossibleboundsonthesetofcopulaswithagivenvalueofspearmansfootrule
AT fernandezsanchezjuan bestpossibleboundsonthesetofcopulaswithagivenvalueofspearmansfootrule
AT ubedafloresmanuel bestpossibleboundsonthesetofcopulaswithagivenvalueofspearmansfootrule