Asymptotics for varying discrete Sobolev orthogonal polynomials
We consider a varying discrete Sobolev inner product such as $$(f,g)_S=\int f(x)g(x)d \mu+M_nf^{(j)}(c)g^{(j)}(c),$$ where $\mu$ is a finite positive Borel measure supported on an infinite subset of the real line, $c$ is adequately located on the real axis, $j \geq0,$ and $\{M_n\}_{n\geq0}$ is a...
Auteurs principaux: | Mañas Mañas, Juan Francisco, Marcellán Español, Francisco, Moreno Balcázar, Juan José |
---|---|
Format: | info:eu-repo/semantics/article |
Langue: | English |
Publié: |
2024
|
Sujets: | |
Accès en ligne: | http://hdl.handle.net/10835/15008 |
Documents similaires
-
Asymptotic behavior of varying discrete Jacobi--Sobolev orthogonal polynomials
par: Mañas Mañas, Juan Francisco, et autres
Publié: (2024) -
Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials
par: Mañas Mañas, Juan Francisco, et autres
Publié: (2020) -
Sobolev Orthogonal Polynomials: Asymptotics and Symbolic Computation
par: Mañas Mañas, Juan Francisco, et autres
Publié: (2024) -
Differential operator for discrete Gegenbauer--Sobolev orthogonal polynomials: eigenvalues and asymptotics
par: Littlejohn, Lance L., et autres
Publié: (2024) -
Classical Sobolev orthogonal polynomials: eigenvalue problem
par: Mañas Mañas, Juan Francisco, et autres
Publié: (2024)