Analysis of non-active power in non-sinusoidal circuits using geometric algebra
A new approach for the definition of non-active power in electrical systems is presented in this paper. Thanks to the use of geometric algebra, it is possible to define a new term called geometric non-active power that is applicable to both sinusoidal and non-sinusoidal systems and to linear and non...
Κύριοι συγγραφείς: | Gil Montoya, Francisco, Alcayde García, Alfredo, Arrabal Campos, Francisco Manuel, Baños Navarro, Raúl, Viciana, Eduardo |
---|---|
Μορφή: | info:eu-repo/semantics/article |
Γλώσσα: | English |
Έκδοση: |
2024
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10835/15060 |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Vector Geometric Algebra in Power Systems: An Updated Formulation of Apparent Power under Non-Sinusoidal Conditions
ανά: Gil Montoya, Francisco, κ.ά.
Έκδοση: (2021) -
Quadrature Current Compensation in Non-Sinusoidal Circuits Using Geometric Algebra and Evolutionary Algorithms
ανά: Gil Montoya, Francisco, κ.ά.
Έκδοση: (2020) -
Geometric Algebra Applied to Multiphase Electrical Circuits in Mixed Time–Frequency Domain by Means of Hypercomplex Hilbert Transform
ανά: Gil Montoya, Francisco, κ.ά.
Έκδοση: (2022) -
Geometric Algebra Framework Applied to Symmetrical Balanced Three-Phase Systems for Sinusoidal and Non-Sinusoidal Voltage Supply
ανά: Gil Montoya, Francisco, κ.ά.
Έκδοση: (2021) -
A new approach to single-phase systems under sinusoidal and non-sinusoidal supply using geometric algebra
ανά: Gil Montoya, Francisco, κ.ά.
Έκδοση: (2024)