Classical Sobolev orthogonal polynomials: eigenvalue problem

We consider the discrete Sobolev inner product $$(f,g)_S=\int f(x)g(x)d\mu+Mf^{(j)}(c)g^{(j)}(c), \quad j\in \mathbb{N}\cup\{0\}, \quad c\in\mathbb{R}, \quad M>0, $$ where $\mu$ is a classical continuous measure with support on the real line (Jacobi, Laguerre or Hermite). The orthonormal polynomi...

Full description

Bibliographic Details
Main Authors: Mañas Mañas, Juan Francisco, Moreno Balcázar, Juan José
Format: info:eu-repo/semantics/article
Language:English
Published: 2024
Subjects:
Online Access:http://hdl.handle.net/10835/15246
_version_ 1789406472334999552
author Mañas Mañas, Juan Francisco
Moreno Balcázar, Juan José
author_facet Mañas Mañas, Juan Francisco
Moreno Balcázar, Juan José
author_sort Mañas Mañas, Juan Francisco
collection DSpace
description We consider the discrete Sobolev inner product $$(f,g)_S=\int f(x)g(x)d\mu+Mf^{(j)}(c)g^{(j)}(c), \quad j\in \mathbb{N}\cup\{0\}, \quad c\in\mathbb{R}, \quad M>0, $$ where $\mu$ is a classical continuous measure with support on the real line (Jacobi, Laguerre or Hermite). The orthonormal polynomials with respect to this Sobolev inner product are eigenfunctions of a differential operator and obtaining the asymptotic behavior of the corresponding eigenvalues is the principal goal of this paper.
format info:eu-repo/semantics/article
id oai:repositorio.ual.es:10835-15246
institution Universidad de Cuenca
language English
publishDate 2024
record_format dspace
spelling oai:repositorio.ual.es:10835-152462024-01-18T08:18:51Z Classical Sobolev orthogonal polynomials: eigenvalue problem Mañas Mañas, Juan Francisco Moreno Balcázar, Juan José Sobolev orthogonal polynomials Differential operator Eigenvalues Asymptotics We consider the discrete Sobolev inner product $$(f,g)_S=\int f(x)g(x)d\mu+Mf^{(j)}(c)g^{(j)}(c), \quad j\in \mathbb{N}\cup\{0\}, \quad c\in\mathbb{R}, \quad M>0, $$ where $\mu$ is a classical continuous measure with support on the real line (Jacobi, Laguerre or Hermite). The orthonormal polynomials with respect to this Sobolev inner product are eigenfunctions of a differential operator and obtaining the asymptotic behavior of the corresponding eigenvalues is the principal goal of this paper. 2024-01-18T08:18:50Z 2024-01-18T08:18:50Z 2019-07 info:eu-repo/semantics/article Juan F. Mañas-Mañas, Juan J. Moreno-Balcázar. Classical Sobolev orthogonal polynomials: eigenvalue problem Results Math. 74 (2019), Art. 144. 1422-6383 http://hdl.handle.net/10835/15246 en Grant MTM2017-89941-P and grant SOMM17/6105/UGR. Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess Juan F. Mañas-Mañas, Juan J. Moreno-Balcázar. Classical Sobolev orthogonal polynomials: eigenvalue problem Results Math. 74 (2019), Art. 144.
spellingShingle Sobolev orthogonal polynomials
Differential operator
Eigenvalues
Asymptotics
Mañas Mañas, Juan Francisco
Moreno Balcázar, Juan José
Classical Sobolev orthogonal polynomials: eigenvalue problem
title Classical Sobolev orthogonal polynomials: eigenvalue problem
title_full Classical Sobolev orthogonal polynomials: eigenvalue problem
title_fullStr Classical Sobolev orthogonal polynomials: eigenvalue problem
title_full_unstemmed Classical Sobolev orthogonal polynomials: eigenvalue problem
title_short Classical Sobolev orthogonal polynomials: eigenvalue problem
title_sort classical sobolev orthogonal polynomials: eigenvalue problem
topic Sobolev orthogonal polynomials
Differential operator
Eigenvalues
Asymptotics
url http://hdl.handle.net/10835/15246
work_keys_str_mv AT manasmanasjuanfrancisco classicalsobolevorthogonalpolynomialseigenvalueproblem
AT morenobalcazarjuanjose classicalsobolevorthogonalpolynomialseigenvalueproblem