Learning recursive probability trees from probabilistic potentials

A recursive probability tree (RPT) is an incipient data structure for representing the distributions in a probabilistic graphical model. RPTs capture most of the types of independencies found in a probability distribution. The explicit representation of these features using RPTs simplifies computati...

Full description

Bibliographic Details
Main Authors: Cano, Andrés, Gómez Olmedo, Manuel, Moral, Serafín, Pérez-Ariza, Cora B., Salmerón Cerdán, Antonio
Format: info:eu-repo/semantics/report
Language:English
Published: 2012
Online Access:http://hdl.handle.net/10835/1549
Description
Summary:A recursive probability tree (RPT) is an incipient data structure for representing the distributions in a probabilistic graphical model. RPTs capture most of the types of independencies found in a probability distribution. The explicit representation of these features using RPTs simplifies computations during inference. This paper describes a learning algorithm that builds a RPT from a probability distribution. Experiments prove that this algorithm generates a good approximation of the original distribution, thus making available all the advantages provided by RPTs