Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials
In this paper we propose a naive Bayes model for unsupervised data clustering, where the class variable is hidden. The feature variables can be discrete or continuous, as the conditional distributions are represented as mixtures of truncated exponentials (MTEs). The number of classes is determined u...
Hlavní autoři: | Gámez Martín, José Antonio, Rumí, Rafael, Salmerón Cerdán, Antonio |
---|---|
Médium: | info:eu-repo/semantics/report |
Jazyk: | English |
Vydáno: |
2012
|
On-line přístup: | http://hdl.handle.net/10835/1555 |
Podobné jednotky
-
Selective naive Bayes predictor with mixtures of truncated exponentials
Autor: Morales, María, a další
Vydáno: (2012) -
Learning naive Bayes regression models with missing data using mixtures of truncated exponentials
Autor: Fernández, Antonio, a další
Vydáno: (2012) -
Estimating mixtures of truncated exponentials from data
Autor: Moral, Serafín, a další
Vydáno: (2012) -
Approximate Probability Propagation with Mixtures of Truncated Exponentials*
Autor: Rumí, Rafael, a další
Vydáno: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
Autor: Langseth, Helge, a další
Vydáno: (2012)