Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials

In this paper we propose a naive Bayes model for unsupervised data clustering, where the class variable is hidden. The feature variables can be discrete or continuous, as the conditional distributions are represented as mixtures of truncated exponentials (MTEs). The number of classes is determined u...

Deskribapen osoa

Xehetasun bibliografikoak
Egile Nagusiak: Gámez Martín, José Antonio, Rumí, Rafael, Salmerón Cerdán, Antonio
Formatua: info:eu-repo/semantics/report
Hizkuntza:English
Argitaratua: 2012
Sarrera elektronikoa:http://hdl.handle.net/10835/1555

Antzeko izenburuak