Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials
In this paper we propose a naive Bayes model for unsupervised data clustering, where the class variable is hidden. The feature variables can be discrete or continuous, as the conditional distributions are represented as mixtures of truncated exponentials (MTEs). The number of classes is determined u...
Main Authors: | Gámez Martín, José Antonio, Rumí, Rafael, Salmerón Cerdán, Antonio |
---|---|
Formato: | info:eu-repo/semantics/report |
Idioma: | English |
Publicado em: |
2012
|
Acesso em linha: | http://hdl.handle.net/10835/1555 |
Registos relacionados
-
Selective naive Bayes predictor with mixtures of truncated exponentials
Por: Morales, María, et al.
Publicado em: (2012) -
Learning naive Bayes regression models with missing data using mixtures of truncated exponentials
Por: Fernández, Antonio, et al.
Publicado em: (2012) -
Estimating mixtures of truncated exponentials from data
Por: Moral, Serafín, et al.
Publicado em: (2012) -
Approximate Probability Propagation with Mixtures of Truncated Exponentials*
Por: Rumí, Rafael, et al.
Publicado em: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
Por: Langseth, Helge, et al.
Publicado em: (2012)