Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials

In this paper we propose a naive Bayes model for unsupervised data clustering, where the class variable is hidden. The feature variables can be discrete or continuous, as the conditional distributions are represented as mixtures of truncated exponentials (MTEs). The number of classes is determined u...

ver descrição completa

Detalhes bibliográficos
Main Authors: Gámez Martín, José Antonio, Rumí, Rafael, Salmerón Cerdán, Antonio
Formato: info:eu-repo/semantics/report
Idioma:English
Publicado em: 2012
Acesso em linha:http://hdl.handle.net/10835/1555

Registos relacionados