Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials
In this paper we propose a naive Bayes model for unsupervised data clustering, where the class variable is hidden. The feature variables can be discrete or continuous, as the conditional distributions are represented as mixtures of truncated exponentials (MTEs). The number of classes is determined u...
Главные авторы: | Gámez Martín, José Antonio, Rumí, Rafael, Salmerón Cerdán, Antonio |
---|---|
Формат: | info:eu-repo/semantics/report |
Язык: | English |
Опубликовано: |
2012
|
Online-ссылка: | http://hdl.handle.net/10835/1555 |
Схожие документы
-
Selective naive Bayes predictor with mixtures of truncated exponentials
по: Morales, María, и др.
Опубликовано: (2012) -
Learning naive Bayes regression models with missing data using mixtures of truncated exponentials
по: Fernández, Antonio, и др.
Опубликовано: (2012) -
Estimating mixtures of truncated exponentials from data
по: Moral, Serafín, и др.
Опубликовано: (2012) -
Approximate Probability Propagation with Mixtures of Truncated Exponentials*
по: Rumí, Rafael, и др.
Опубликовано: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
по: Langseth, Helge, и др.
Опубликовано: (2012)