Properties of Matrix Orthogonal Polynomials via their Riemann-Hilbert Characterization
We give a Riemann–Hilbert approach to the theory of matrix orthogonal polynomials. We will focus on the algebraic aspects of the problem, obtaining difference and differential relations satisfied by the corresponding orthogonal polynomials. We will show that in the matrix case there is some extra fr...
Autors principals: | Grünbaum, F. Alberto, De la Iglesia, Manuel D., Martínez-Finkelshtein, Andrei |
---|---|
Format: | info:eu-repo/semantics/article |
Idioma: | English |
Publicat: |
2012
|
Matèries: | |
Accés en línia: | http://hdl.handle.net/10835/1591 |
Ítems similars
-
Szego polynomials: a view from the Riemann-Hilbert window
per: Martínez-Finkelshtein, Andrei
Publicat: (2012) -
Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour
per: Martínez-Finkelshtein, Andrei, et al.
Publicat: (2012) -
On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials
per: Foulquié Moreno, A., et al.
Publicat: (2012) -
Heine, Hilbert, Padé, Riemann, and Stieltjes: a John
per: Martínez-Finkelshtein, Andrei, et al.
Publicat: (2012) -
Asymptotics of orthogonal polynomials for a weight with a jump on [-1; 1]
per: Foulquié Moreno, A., et al.
Publicat: (2012)