An adaptive algorithm for the cornea modeling from keratometric data

In this paper we describe an adaptive and multi-scale algorithm for the parsimonious t of the corneal surface data that allows to adapt the number of functions used in the reconstruction to the conditions of each cornea. The method implements also a dynamical selection of the parameters and the man...

Ամբողջական նկարագրություն

Մատենագիտական մանրամասներ
Հիմնական հեղինակներ: Martínez-Finkelshtein, Andrei, Ramos López, Darío, Castro-Luna, Gracia M., Alio y Sanz, Jorge L.
Ձևաչափ: info:eu-repo/semantics/article
Լեզու:English
Հրապարակվել է: 2012
Խորագրեր:
Առցանց հասանելիություն:http://hdl.handle.net/10835/1623
_version_ 1789406280486486016
author Martínez-Finkelshtein, Andrei
Ramos López, Darío
Castro-Luna, Gracia M.
Alio y Sanz, Jorge L.
author_facet Martínez-Finkelshtein, Andrei
Ramos López, Darío
Castro-Luna, Gracia M.
Alio y Sanz, Jorge L.
author_sort Martínez-Finkelshtein, Andrei
collection DSpace
description In this paper we describe an adaptive and multi-scale algorithm for the parsimonious t of the corneal surface data that allows to adapt the number of functions used in the reconstruction to the conditions of each cornea. The method implements also a dynamical selection of the parameters and the management of noise. It can be used for the real-time reconstruction of both altimetric data and corneal power maps from the data collected by keratoscopes, such as the Placido rings based topographers, decisive for an early detection of corneal diseases such as keratoconus. Numerical experiments show that the algorithm exhibits a steady exponential error decay, independently of the level of aberration of the cornea. The complexity of each anisotropic gaussian basis functions in the functional representation is the same, but their parameters vary to fit the current scale. This scale is determined only by the residual errors and not by the number of the iteration. Finally, the position and clustering of their centers, as well as the size of the shape parameters, provides an additional spatial information about the regions of higher irregularity. These results are compared with the standard approximation procedures based on the Zernike polynomials expansions.
format info:eu-repo/semantics/article
id oai:repositorio.ual.es:10835-1623
institution Universidad de Cuenca
language English
publishDate 2012
record_format dspace
spelling oai:repositorio.ual.es:10835-16232023-04-12T19:36:04Z An adaptive algorithm for the cornea modeling from keratometric data Martínez-Finkelshtein, Andrei Ramos López, Darío Castro-Luna, Gracia M. Alio y Sanz, Jorge L. Polinomios de Zernike Superficie de reconstrucción Modelado de superficies Irregularidades de la córnea Funciones de base radial Métodos multi-escala Zernike polynomials Surface reconstruction Surface modeling Corneal irregularities Gaussian functions Radial basis functions Multi-scale methods In this paper we describe an adaptive and multi-scale algorithm for the parsimonious t of the corneal surface data that allows to adapt the number of functions used in the reconstruction to the conditions of each cornea. The method implements also a dynamical selection of the parameters and the management of noise. It can be used for the real-time reconstruction of both altimetric data and corneal power maps from the data collected by keratoscopes, such as the Placido rings based topographers, decisive for an early detection of corneal diseases such as keratoconus. Numerical experiments show that the algorithm exhibits a steady exponential error decay, independently of the level of aberration of the cornea. The complexity of each anisotropic gaussian basis functions in the functional representation is the same, but their parameters vary to fit the current scale. This scale is determined only by the residual errors and not by the number of the iteration. Finally, the position and clustering of their centers, as well as the size of the shape parameters, provides an additional spatial information about the regions of higher irregularity. These results are compared with the standard approximation procedures based on the Zernike polynomials expansions. 2012-07-31T11:42:57Z 2012-07-31T11:42:57Z 2011 info:eu-repo/semantics/article http://hdl.handle.net/10835/1623 en info:eu-repo/semantics/openAccess Investigative ophthalmology and visual science Vol. 52 Nº 8 (2011)
spellingShingle Polinomios de Zernike
Superficie de reconstrucción
Modelado de superficies
Irregularidades de la córnea
Funciones de base radial
Métodos multi-escala
Zernike polynomials
Surface reconstruction
Surface modeling
Corneal irregularities
Gaussian functions
Radial basis functions
Multi-scale methods
Martínez-Finkelshtein, Andrei
Ramos López, Darío
Castro-Luna, Gracia M.
Alio y Sanz, Jorge L.
An adaptive algorithm for the cornea modeling from keratometric data
title An adaptive algorithm for the cornea modeling from keratometric data
title_full An adaptive algorithm for the cornea modeling from keratometric data
title_fullStr An adaptive algorithm for the cornea modeling from keratometric data
title_full_unstemmed An adaptive algorithm for the cornea modeling from keratometric data
title_short An adaptive algorithm for the cornea modeling from keratometric data
title_sort adaptive algorithm for the cornea modeling from keratometric data
topic Polinomios de Zernike
Superficie de reconstrucción
Modelado de superficies
Irregularidades de la córnea
Funciones de base radial
Métodos multi-escala
Zernike polynomials
Surface reconstruction
Surface modeling
Corneal irregularities
Gaussian functions
Radial basis functions
Multi-scale methods
url http://hdl.handle.net/10835/1623
work_keys_str_mv AT martinezfinkelshteinandrei anadaptivealgorithmforthecorneamodelingfromkeratometricdata
AT ramoslopezdario anadaptivealgorithmforthecorneamodelingfromkeratometricdata
AT castrolunagraciam anadaptivealgorithmforthecorneamodelingfromkeratometricdata
AT alioysanzjorgel anadaptivealgorithmforthecorneamodelingfromkeratometricdata
AT martinezfinkelshteinandrei adaptivealgorithmforthecorneamodelingfromkeratometricdata
AT ramoslopezdario adaptivealgorithmforthecorneamodelingfromkeratometricdata
AT castrolunagraciam adaptivealgorithmforthecorneamodelingfromkeratometricdata
AT alioysanzjorgel adaptivealgorithmforthecorneamodelingfromkeratometricdata