An adaptive algorithm for the cornea modeling from keratometric data
In this paper we describe an adaptive and multi-scale algorithm for the parsimonious t of the corneal surface data that allows to adapt the number of functions used in the reconstruction to the conditions of each cornea. The method implements also a dynamical selection of the parameters and the man...
Հիմնական հեղինակներ: | , , , |
---|---|
Ձևաչափ: | info:eu-repo/semantics/article |
Լեզու: | English |
Հրապարակվել է: |
2012
|
Խորագրեր: | |
Առցանց հասանելիություն: | http://hdl.handle.net/10835/1623 |
_version_ | 1789406280486486016 |
---|---|
author | Martínez-Finkelshtein, Andrei Ramos López, Darío Castro-Luna, Gracia M. Alio y Sanz, Jorge L. |
author_facet | Martínez-Finkelshtein, Andrei Ramos López, Darío Castro-Luna, Gracia M. Alio y Sanz, Jorge L. |
author_sort | Martínez-Finkelshtein, Andrei |
collection | DSpace |
description | In this paper we describe an adaptive and multi-scale algorithm for the parsimonious t of the corneal surface data that allows to adapt the number of functions used in the reconstruction to the conditions of each cornea. The method implements also a dynamical selection of the parameters and the management of noise. It can be used for the real-time reconstruction of both altimetric data and corneal power maps from the data collected by keratoscopes, such as the Placido rings based topographers, decisive for an early detection of corneal diseases such as keratoconus. Numerical experiments show that the algorithm exhibits a steady exponential error decay, independently of the level of aberration of the cornea. The complexity of each anisotropic gaussian basis functions in the functional representation is the same, but their parameters vary to fit the current scale. This scale is determined only by the residual errors and not by the number of the iteration. Finally, the position and clustering of their centers, as well as the size of the shape parameters, provides an additional spatial information about the regions of higher irregularity. These results are compared with the standard approximation procedures based on the Zernike polynomials expansions. |
format | info:eu-repo/semantics/article |
id | oai:repositorio.ual.es:10835-1623 |
institution | Universidad de Cuenca |
language | English |
publishDate | 2012 |
record_format | dspace |
spelling | oai:repositorio.ual.es:10835-16232023-04-12T19:36:04Z An adaptive algorithm for the cornea modeling from keratometric data Martínez-Finkelshtein, Andrei Ramos López, Darío Castro-Luna, Gracia M. Alio y Sanz, Jorge L. Polinomios de Zernike Superficie de reconstrucción Modelado de superficies Irregularidades de la córnea Funciones de base radial Métodos multi-escala Zernike polynomials Surface reconstruction Surface modeling Corneal irregularities Gaussian functions Radial basis functions Multi-scale methods In this paper we describe an adaptive and multi-scale algorithm for the parsimonious t of the corneal surface data that allows to adapt the number of functions used in the reconstruction to the conditions of each cornea. The method implements also a dynamical selection of the parameters and the management of noise. It can be used for the real-time reconstruction of both altimetric data and corneal power maps from the data collected by keratoscopes, such as the Placido rings based topographers, decisive for an early detection of corneal diseases such as keratoconus. Numerical experiments show that the algorithm exhibits a steady exponential error decay, independently of the level of aberration of the cornea. The complexity of each anisotropic gaussian basis functions in the functional representation is the same, but their parameters vary to fit the current scale. This scale is determined only by the residual errors and not by the number of the iteration. Finally, the position and clustering of their centers, as well as the size of the shape parameters, provides an additional spatial information about the regions of higher irregularity. These results are compared with the standard approximation procedures based on the Zernike polynomials expansions. 2012-07-31T11:42:57Z 2012-07-31T11:42:57Z 2011 info:eu-repo/semantics/article http://hdl.handle.net/10835/1623 en info:eu-repo/semantics/openAccess Investigative ophthalmology and visual science Vol. 52 Nº 8 (2011) |
spellingShingle | Polinomios de Zernike Superficie de reconstrucción Modelado de superficies Irregularidades de la córnea Funciones de base radial Métodos multi-escala Zernike polynomials Surface reconstruction Surface modeling Corneal irregularities Gaussian functions Radial basis functions Multi-scale methods Martínez-Finkelshtein, Andrei Ramos López, Darío Castro-Luna, Gracia M. Alio y Sanz, Jorge L. An adaptive algorithm for the cornea modeling from keratometric data |
title | An adaptive algorithm for the cornea modeling from keratometric data |
title_full | An adaptive algorithm for the cornea modeling from keratometric data |
title_fullStr | An adaptive algorithm for the cornea modeling from keratometric data |
title_full_unstemmed | An adaptive algorithm for the cornea modeling from keratometric data |
title_short | An adaptive algorithm for the cornea modeling from keratometric data |
title_sort | adaptive algorithm for the cornea modeling from keratometric data |
topic | Polinomios de Zernike Superficie de reconstrucción Modelado de superficies Irregularidades de la córnea Funciones de base radial Métodos multi-escala Zernike polynomials Surface reconstruction Surface modeling Corneal irregularities Gaussian functions Radial basis functions Multi-scale methods |
url | http://hdl.handle.net/10835/1623 |
work_keys_str_mv | AT martinezfinkelshteinandrei anadaptivealgorithmforthecorneamodelingfromkeratometricdata AT ramoslopezdario anadaptivealgorithmforthecorneamodelingfromkeratometricdata AT castrolunagraciam anadaptivealgorithmforthecorneamodelingfromkeratometricdata AT alioysanzjorgel anadaptivealgorithmforthecorneamodelingfromkeratometricdata AT martinezfinkelshteinandrei adaptivealgorithmforthecorneamodelingfromkeratometricdata AT ramoslopezdario adaptivealgorithmforthecorneamodelingfromkeratometricdata AT castrolunagraciam adaptivealgorithmforthecorneamodelingfromkeratometricdata AT alioysanzjorgel adaptivealgorithmforthecorneamodelingfromkeratometricdata |