On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials

We investigate the strong asymptotics of Heine-Stieltjes polynomials - polynomial solutions of a second order differential equations with complex polynomial coefficients. The solution is given in terms of critical measures (saddle points of the weighted logarithmic energy on the plane), that are tig...

Full description

Bibliographic Details
Main Authors: Martínez-Finkelshtein, Andrei, Rakhmanov, Evgenii A.
Format: info:eu-repo/semantics/article
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/10835/1627
_version_ 1789406449567268864
author Martínez-Finkelshtein, Andrei
Rakhmanov, Evgenii A.
author_facet Martínez-Finkelshtein, Andrei
Rakhmanov, Evgenii A.
author_sort Martínez-Finkelshtein, Andrei
collection DSpace
description We investigate the strong asymptotics of Heine-Stieltjes polynomials - polynomial solutions of a second order differential equations with complex polynomial coefficients. The solution is given in terms of critical measures (saddle points of the weighted logarithmic energy on the plane), that are tightly related to quadratic differentials with closed trajectories on the plane. The paper is a continuation of the research initiated in [arXiv:0902.0193]. However, the starting point here is the WKB method, which allows to obtain the strong asymptotics.
format info:eu-repo/semantics/article
id oai:repositorio.ual.es:10835-1627
institution Universidad de Cuenca
language English
publishDate 2012
record_format dspace
spelling oai:repositorio.ual.es:10835-16272023-04-12T19:37:27Z On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials Martínez-Finkelshtein, Andrei Rakhmanov, Evgenii A. Comportamiento asintótico Heine-Stieltjes Polinomios Van Vleck Asymptotic behavior Van Vleck polynomials We investigate the strong asymptotics of Heine-Stieltjes polynomials - polynomial solutions of a second order differential equations with complex polynomial coefficients. The solution is given in terms of critical measures (saddle points of the weighted logarithmic energy on the plane), that are tightly related to quadratic differentials with closed trajectories on the plane. The paper is a continuation of the research initiated in [arXiv:0902.0193]. However, the starting point here is the WKB method, which allows to obtain the strong asymptotics. 2012-08-01T07:36:06Z 2012-08-01T07:36:06Z 2010 info:eu-repo/semantics/article http://hdl.handle.net/10835/1627 en info:eu-repo/semantics/openAccess Contemporary Mathematics 507 (2010)
spellingShingle Comportamiento asintótico
Heine-Stieltjes
Polinomios Van Vleck
Asymptotic behavior
Van Vleck polynomials
Martínez-Finkelshtein, Andrei
Rakhmanov, Evgenii A.
On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials
title On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials
title_full On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials
title_fullStr On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials
title_full_unstemmed On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials
title_short On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials
title_sort on asymptotic behavior of heine-stieltjes and van vleck polynomials
topic Comportamiento asintótico
Heine-Stieltjes
Polinomios Van Vleck
Asymptotic behavior
Van Vleck polynomials
url http://hdl.handle.net/10835/1627
work_keys_str_mv AT martinezfinkelshteinandrei onasymptoticbehaviorofheinestieltjesandvanvleckpolynomials
AT rakhmanovevgeniia onasymptoticbehaviorofheinestieltjesandvanvleckpolynomials