Discrete entropies of orthogonal polynomials

Let $p_n$ be the $n$-th orthonormal polynomial on the real line, whose zeros are $\lambda_j^{(n)}$, $j=1, ..., n$. Then for each $j=1, ..., n$, $$ \vec \Psi_j^2 = (\Psi_{1j}^2, ..., \Psi_{nj}^2) $$ with $$ \Psi_{ij}^2= p_{i-1}^2 (\lambda_j^{(n)}) (\sum_{k=0}^{n-1} p_k^2(\lambda_j^{(n)}))^{-1}, \quad...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Aptekarev, A. I., Dehesa, J. S., Martínez-Finkelshtein, Andrei, Yáñez, R.
Định dạng: info:eu-repo/semantics/article
Ngôn ngữ:English
Được phát hành: 2012
Những chủ đề:
Truy cập trực tuyến:http://hdl.handle.net/10835/1630
_version_ 1789406449782226944
author Aptekarev, A. I.
Dehesa, J. S.
Martínez-Finkelshtein, Andrei
Yáñez, R.
author_facet Aptekarev, A. I.
Dehesa, J. S.
Martínez-Finkelshtein, Andrei
Yáñez, R.
author_sort Aptekarev, A. I.
collection DSpace
description Let $p_n$ be the $n$-th orthonormal polynomial on the real line, whose zeros are $\lambda_j^{(n)}$, $j=1, ..., n$. Then for each $j=1, ..., n$, $$ \vec \Psi_j^2 = (\Psi_{1j}^2, ..., \Psi_{nj}^2) $$ with $$ \Psi_{ij}^2= p_{i-1}^2 (\lambda_j^{(n)}) (\sum_{k=0}^{n-1} p_k^2(\lambda_j^{(n)}))^{-1}, \quad i=1, >..., n, $$ defines a discrete probability distribution. The Shannon entropy of the sequence $\{p_n\}$ is consequently defined as $$ \mathcal S_{n,j} = -\sum_{i=1}^n \Psi_{ij}^{2} \log (\Psi_{ij}^{2}) . $$ In the case of Chebyshev polynomials of the first and second kinds an explicit and closed formula for $\mathcal S_{n,j}$ is obtained, revealing interesting connections with the number theory. Besides, several results of numerical computations exemplifying the behavior of $\mathcal S_{n,j}$ for other families are also presented.
format info:eu-repo/semantics/article
id oai:repositorio.ual.es:10835-1630
institution Universidad de Cuenca
language English
publishDate 2012
record_format dspace
spelling oai:repositorio.ual.es:10835-16302023-04-12T19:37:30Z Discrete entropies of orthogonal polynomials Aptekarev, A. I. Dehesa, J. S. Martínez-Finkelshtein, Andrei Yáñez, R. Polinomios ortogonales Entropía de Shannon Chebyshev polinomios Fórmula Euler–Maclaurin Orthogonal polynomials Shannon entropy Chebyshev polynomials Euler–Maclaurin formula Let $p_n$ be the $n$-th orthonormal polynomial on the real line, whose zeros are $\lambda_j^{(n)}$, $j=1, ..., n$. Then for each $j=1, ..., n$, $$ \vec \Psi_j^2 = (\Psi_{1j}^2, ..., \Psi_{nj}^2) $$ with $$ \Psi_{ij}^2= p_{i-1}^2 (\lambda_j^{(n)}) (\sum_{k=0}^{n-1} p_k^2(\lambda_j^{(n)}))^{-1}, \quad i=1, >..., n, $$ defines a discrete probability distribution. The Shannon entropy of the sequence $\{p_n\}$ is consequently defined as $$ \mathcal S_{n,j} = -\sum_{i=1}^n \Psi_{ij}^{2} \log (\Psi_{ij}^{2}) . $$ In the case of Chebyshev polynomials of the first and second kinds an explicit and closed formula for $\mathcal S_{n,j}$ is obtained, revealing interesting connections with the number theory. Besides, several results of numerical computations exemplifying the behavior of $\mathcal S_{n,j}$ for other families are also presented. 2012-08-01T08:45:54Z 2012-08-01T08:45:54Z 2009 info:eu-repo/semantics/article http://hdl.handle.net/10835/1630 en info:eu-repo/semantics/openAccess Constructive Approximation Vol. 30 Nº 1 (2009)
spellingShingle Polinomios ortogonales
Entropía de Shannon
Chebyshev polinomios
Fórmula Euler–Maclaurin
Orthogonal polynomials
Shannon entropy
Chebyshev polynomials
Euler–Maclaurin formula
Aptekarev, A. I.
Dehesa, J. S.
Martínez-Finkelshtein, Andrei
Yáñez, R.
Discrete entropies of orthogonal polynomials
title Discrete entropies of orthogonal polynomials
title_full Discrete entropies of orthogonal polynomials
title_fullStr Discrete entropies of orthogonal polynomials
title_full_unstemmed Discrete entropies of orthogonal polynomials
title_short Discrete entropies of orthogonal polynomials
title_sort discrete entropies of orthogonal polynomials
topic Polinomios ortogonales
Entropía de Shannon
Chebyshev polinomios
Fórmula Euler–Maclaurin
Orthogonal polynomials
Shannon entropy
Chebyshev polynomials
Euler–Maclaurin formula
url http://hdl.handle.net/10835/1630
work_keys_str_mv AT aptekarevai discreteentropiesoforthogonalpolynomials
AT dehesajs discreteentropiesoforthogonalpolynomials
AT martinezfinkelshteinandrei discreteentropiesoforthogonalpolynomials
AT yanezr discreteentropiesoforthogonalpolynomials