Discrete entropies of orthogonal polynomials
Let $p_n$ be the $n$-th orthonormal polynomial on the real line, whose zeros are $\lambda_j^{(n)}$, $j=1, ..., n$. Then for each $j=1, ..., n$, $$ \vec \Psi_j^2 = (\Psi_{1j}^2, ..., \Psi_{nj}^2) $$ with $$ \Psi_{ij}^2= p_{i-1}^2 (\lambda_j^{(n)}) (\sum_{k=0}^{n-1} p_k^2(\lambda_j^{(n)}))^{-1}, \quad...
Main Authors: | Aptekarev, A. I., Dehesa, J. S., Martínez-Finkelshtein, Andrei, Yáñez, R. |
---|---|
Format: | info:eu-repo/semantics/article |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | http://hdl.handle.net/10835/1630 |
Similar Items
-
Shannon entropy of symmetric Pollaczek polynomials
by: Martínez-Finkelshtein, Andrei, et al.
Published: (2012) -
Properties of Matrix Orthogonal Polynomials via their Riemann-Hilbert Characterization
by: Grünbaum, F. Alberto, et al.
Published: (2012) -
Asymptotics for varying discrete Sobolev orthogonal polynomials
by: Mañas Mañas, Juan Francisco, et al.
Published: (2024) -
Asymptotics of the L2 norm of derivatives of OPUC
by: Martínez-Finkelshtein, Andrei, et al.
Published: (2012) -
Computation of the entropy of polynomials orthogonal on an interval.
by: Buyarov, V., et al.
Published: (2012)