Discrete entropies of orthogonal polynomials
Let $p_n$ be the $n$-th orthonormal polynomial on the real line, whose zeros are $\lambda_j^{(n)}$, $j=1, ..., n$. Then for each $j=1, ..., n$, $$ \vec \Psi_j^2 = (\Psi_{1j}^2, ..., \Psi_{nj}^2) $$ with $$ \Psi_{ij}^2= p_{i-1}^2 (\lambda_j^{(n)}) (\sum_{k=0}^{n-1} p_k^2(\lambda_j^{(n)}))^{-1}, \quad...
Auteurs principaux: | Aptekarev, A. I., Dehesa, J. S., Martínez-Finkelshtein, Andrei, Yáñez, R. |
---|---|
Format: | info:eu-repo/semantics/article |
Langue: | English |
Publié: |
2012
|
Sujets: | |
Accès en ligne: | http://hdl.handle.net/10835/1630 |
Documents similaires
-
Shannon entropy of symmetric Pollaczek polynomials
par: Martínez-Finkelshtein, Andrei, et autres
Publié: (2012) -
Properties of Matrix Orthogonal Polynomials via their Riemann-Hilbert Characterization
par: Grünbaum, F. Alberto, et autres
Publié: (2012) -
Asymptotics for varying discrete Sobolev orthogonal polynomials
par: Mañas Mañas, Juan Francisco, et autres
Publié: (2024) -
Asymptotics of the L2 norm of derivatives of OPUC
par: Martínez-Finkelshtein, Andrei, et autres
Publié: (2012) -
Computation of the entropy of polynomials orthogonal on an interval.
par: Buyarov, V., et autres
Publié: (2012)