Discrete entropies of orthogonal polynomials
Let $p_n$ be the $n$-th orthonormal polynomial on the real line, whose zeros are $\lambda_j^{(n)}$, $j=1, ..., n$. Then for each $j=1, ..., n$, $$ \vec \Psi_j^2 = (\Psi_{1j}^2, ..., \Psi_{nj}^2) $$ with $$ \Psi_{ij}^2= p_{i-1}^2 (\lambda_j^{(n)}) (\sum_{k=0}^{n-1} p_k^2(\lambda_j^{(n)}))^{-1}, \quad...
Główni autorzy: | Aptekarev, A. I., Dehesa, J. S., Martínez-Finkelshtein, Andrei, Yáñez, R. |
---|---|
Format: | info:eu-repo/semantics/article |
Język: | English |
Wydane: |
2012
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10835/1630 |
Podobne zapisy
-
Shannon entropy of symmetric Pollaczek polynomials
od: Martínez-Finkelshtein, Andrei, i wsp.
Wydane: (2012) -
Properties of Matrix Orthogonal Polynomials via their Riemann-Hilbert Characterization
od: Grünbaum, F. Alberto, i wsp.
Wydane: (2012) -
Asymptotics for varying discrete Sobolev orthogonal polynomials
od: Mañas Mañas, Juan Francisco, i wsp.
Wydane: (2024) -
Asymptotics of the L2 norm of derivatives of OPUC
od: Martínez-Finkelshtein, Andrei, i wsp.
Wydane: (2012) -
Computation of the entropy of polynomials orthogonal on an interval.
od: Buyarov, V., i wsp.
Wydane: (2012)