Orthogonality of Jacobi polynomials with general parameters.

In this paper we study the orthogonality conditions satisfied by Jacobi polynomials $P_n^{(\alpha,\beta)}$ when the parameters $\alpha$ and $\beta$ are not necessarily $>-1$. We establish orthogonality on a generic closed contour on a Riemann surface. Depending on the parameters, this leads to ei...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Kuijlaars, A. B. J., Martínez-Finkelshtein, Andrei, Orive, R.
বিন্যাস: info:eu-repo/semantics/article
ভাষা:English
প্রকাশিত: 2012
বিষয়গুলি:
অনলাইন ব্যবহার করুন:http://hdl.handle.net/10835/1636
বিবরন
সংক্ষিপ্ত:In this paper we study the orthogonality conditions satisfied by Jacobi polynomials $P_n^{(\alpha,\beta)}$ when the parameters $\alpha$ and $\beta$ are not necessarily $>-1$. We establish orthogonality on a generic closed contour on a Riemann surface. Depending on the parameters, this leads to either full orthogonality conditions on a single contour in the plane, or to multiple orthogonality conditions on a number of contours in the plane. In all cases we show that the orthogonality conditions characterize the Jacobi polynomial $P_n^{(\alpha, \beta)}$ of degree $n$ up to a constant factor.