Orthogonality of Jacobi polynomials with general parameters.

In this paper we study the orthogonality conditions satisfied by Jacobi polynomials $P_n^{(\alpha,\beta)}$ when the parameters $\alpha$ and $\beta$ are not necessarily $>-1$. We establish orthogonality on a generic closed contour on a Riemann surface. Depending on the parameters, this leads to ei...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Kuijlaars, A. B. J., Martínez-Finkelshtein, Andrei, Orive, R.
Định dạng: info:eu-repo/semantics/article
Ngôn ngữ:English
Được phát hành: 2012
Những chủ đề:
Truy cập trực tuyến:http://hdl.handle.net/10835/1636
Miêu tả
Tóm tắt:In this paper we study the orthogonality conditions satisfied by Jacobi polynomials $P_n^{(\alpha,\beta)}$ when the parameters $\alpha$ and $\beta$ are not necessarily $>-1$. We establish orthogonality on a generic closed contour on a Riemann surface. Depending on the parameters, this leads to either full orthogonality conditions on a single contour in the plane, or to multiple orthogonality conditions on a number of contours in the plane. In all cases we show that the orthogonality conditions characterize the Jacobi polynomial $P_n^{(\alpha, \beta)}$ of degree $n$ up to a constant factor.