Orthogonality of Jacobi polynomials with general parameters.

In this paper we study the orthogonality conditions satisfied by Jacobi polynomials $P_n^{(\alpha,\beta)}$ when the parameters $\alpha$ and $\beta$ are not necessarily $>-1$. We establish orthogonality on a generic closed contour on a Riemann surface. Depending on the parameters, this leads to ei...

Full description

Bibliographic Details
Main Authors: Kuijlaars, A. B. J., Martínez-Finkelshtein, Andrei, Orive, R.
Format: info:eu-repo/semantics/article
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/10835/1636
_version_ 1789406514009604096
author Kuijlaars, A. B. J.
Martínez-Finkelshtein, Andrei
Orive, R.
author_facet Kuijlaars, A. B. J.
Martínez-Finkelshtein, Andrei
Orive, R.
author_sort Kuijlaars, A. B. J.
collection DSpace
description In this paper we study the orthogonality conditions satisfied by Jacobi polynomials $P_n^{(\alpha,\beta)}$ when the parameters $\alpha$ and $\beta$ are not necessarily $>-1$. We establish orthogonality on a generic closed contour on a Riemann surface. Depending on the parameters, this leads to either full orthogonality conditions on a single contour in the plane, or to multiple orthogonality conditions on a number of contours in the plane. In all cases we show that the orthogonality conditions characterize the Jacobi polynomial $P_n^{(\alpha, \beta)}$ of degree $n$ up to a constant factor.
format info:eu-repo/semantics/article
id oai:repositorio.ual.es:10835-1636
institution Universidad de Cuenca
language English
publishDate 2012
record_format dspace
spelling oai:repositorio.ual.es:10835-16362023-04-12T19:38:01Z Orthogonality of Jacobi polynomials with general parameters. Kuijlaars, A. B. J. Martínez-Finkelshtein, Andrei Orive, R. Polinomios ortogonales Polinomios de Jacobi In this paper we study the orthogonality conditions satisfied by Jacobi polynomials $P_n^{(\alpha,\beta)}$ when the parameters $\alpha$ and $\beta$ are not necessarily $>-1$. We establish orthogonality on a generic closed contour on a Riemann surface. Depending on the parameters, this leads to either full orthogonality conditions on a single contour in the plane, or to multiple orthogonality conditions on a number of contours in the plane. In all cases we show that the orthogonality conditions characterize the Jacobi polynomial $P_n^{(\alpha, \beta)}$ of degree $n$ up to a constant factor. 2012-08-03T08:26:58Z 2012-08-03T08:26:58Z 2005 info:eu-repo/semantics/article 1068-9613 http://hdl.handle.net/10835/1636 en info:eu-repo/semantics/openAccess Electronic Transfer Numerical Analysis. Vol. 19, 1-17 (2005)
spellingShingle Polinomios ortogonales
Polinomios de Jacobi
Kuijlaars, A. B. J.
Martínez-Finkelshtein, Andrei
Orive, R.
Orthogonality of Jacobi polynomials with general parameters.
title Orthogonality of Jacobi polynomials with general parameters.
title_full Orthogonality of Jacobi polynomials with general parameters.
title_fullStr Orthogonality of Jacobi polynomials with general parameters.
title_full_unstemmed Orthogonality of Jacobi polynomials with general parameters.
title_short Orthogonality of Jacobi polynomials with general parameters.
title_sort orthogonality of jacobi polynomials with general parameters.
topic Polinomios ortogonales
Polinomios de Jacobi
url http://hdl.handle.net/10835/1636
work_keys_str_mv AT kuijlaarsabj orthogonalityofjacobipolynomialswithgeneralparameters
AT martinezfinkelshteinandrei orthogonalityofjacobipolynomialswithgeneralparameters
AT oriver orthogonalityofjacobipolynomialswithgeneralparameters