Computation of the entropy of polynomials orthogonal on an interval.
We give an effective method to compute the entropy for polynomials orthogonal on a segment of the real axis that uses as input data only the coefficients of the recurrence relation satisfied by these polynomials. This algorithm is based on a series expression for the mutual energy of two probability...
Hlavní autoři: | Buyarov, V., Dehesa, J. S., Martínez-Finkelshtein, Andrei, Sánchez-Lara, J. F. |
---|---|
Médium: | info:eu-repo/semantics/article |
Jazyk: | English |
Vydáno: |
2012
|
Témata: | |
On-line přístup: | http://hdl.handle.net/10835/1639 |
Podobné jednotky
-
Orthogonality of Jacobi polynomials with general parameters.
Autor: Kuijlaars, A. B. J., a další
Vydáno: (2012) -
Discrete entropies of orthogonal polynomials
Autor: Aptekarev, A. I., a další
Vydáno: (2012) -
Asymptotic upper bounds for the entropy of orthogonal polynomials in the Szegő class.
Autor: Beckermann, B., a další
Vydáno: (2012) -
Properties of Matrix Orthogonal Polynomials via their Riemann-Hilbert Characterization
Autor: Grünbaum, F. Alberto, a další
Vydáno: (2012) -
Asymptotics of orthogonal polynomials with respect to an analytic weight with algebraic singularities on the circle
Autor: Martínez-Finkelshtein, Andrei, a další
Vydáno: (2012)