Asymptotic upper bounds for the entropy of orthogonal polynomials in the Szegő class.
We give an asymptotic upper bound as $n\to\infty$ for the entropy integral $$E_n(w)= -\int p_n^2(x)\log (p_n^2(x))w(x)dx,$$ where $p_n$ is the $n$th degree orthonormal polynomial with respect to a weight $w(x)$ on $[-1,1]$ which belongs to the Szeg\H{o} class. We also study two functionals closely r...
Главные авторы: | Beckermann, B., Martínez-Finkelshtein, Andrei, Rakhmanov, Evgenii A., Wielonsky, F. |
---|---|
Формат: | info:eu-repo/semantics/article |
Язык: | English |
Опубликовано: |
2012
|
Предметы: | |
Online-ссылка: | http://hdl.handle.net/10835/1640 |
Схожие документы
-
Computation of the entropy of polynomials orthogonal on an interval.
по: Buyarov, V., и др.
Опубликовано: (2012) -
Orthogonality of Jacobi polynomials with general parameters.
по: Kuijlaars, A. B. J., и др.
Опубликовано: (2012) -
Discrete entropies of orthogonal polynomials
по: Aptekarev, A. I., и др.
Опубликовано: (2012) -
On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials
по: Martínez-Finkelshtein, Andrei, и др.
Опубликовано: (2012) -
Strong asymptotics for Jacobi polynomials with varying nonstandard parameters.
по: Kuijlaars, A. B. J., и др.
Опубликовано: (2012)