Asymptotic upper bounds for the entropy of orthogonal polynomials in the Szegő class.
We give an asymptotic upper bound as $n\to\infty$ for the entropy integral $$E_n(w)= -\int p_n^2(x)\log (p_n^2(x))w(x)dx,$$ where $p_n$ is the $n$th degree orthonormal polynomial with respect to a weight $w(x)$ on $[-1,1]$ which belongs to the Szeg\H{o} class. We also study two functionals closely r...
Huvudupphovsmän: | Beckermann, B., Martínez-Finkelshtein, Andrei, Rakhmanov, Evgenii A., Wielonsky, F. |
---|---|
Materialtyp: | info:eu-repo/semantics/article |
Språk: | English |
Publicerad: |
2012
|
Ämnen: | |
Länkar: | http://hdl.handle.net/10835/1640 |
Liknande verk
-
Computation of the entropy of polynomials orthogonal on an interval.
av: Buyarov, V., et al.
Publicerad: (2012) -
Orthogonality of Jacobi polynomials with general parameters.
av: Kuijlaars, A. B. J., et al.
Publicerad: (2012) -
Discrete entropies of orthogonal polynomials
av: Aptekarev, A. I., et al.
Publicerad: (2012) -
On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials
av: Martínez-Finkelshtein, Andrei, et al.
Publicerad: (2012) -
Strong asymptotics for Jacobi polynomials with varying nonstandard parameters.
av: Kuijlaars, A. B. J., et al.
Publicerad: (2012)