Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour

Classical Jacobi polynomials $P_{n}^{(\alpha,\beta)}$, with $\alpha, \beta>-1$, have a number of well-known properties, in particular the location of their zeros in the open interval $(-1,1)$. This property is no longer valid for other values of the parameters; in general, zeros are complex. In t...

Full description

Bibliographic Details
Main Authors: Martínez-Finkelshtein, Andrei, Orive, R.
Format: info:eu-repo/semantics/article
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/10835/1641
_version_ 1789406363651145728
author Martínez-Finkelshtein, Andrei
Orive, R.
author_facet Martínez-Finkelshtein, Andrei
Orive, R.
author_sort Martínez-Finkelshtein, Andrei
collection DSpace
description Classical Jacobi polynomials $P_{n}^{(\alpha,\beta)}$, with $\alpha, \beta>-1$, have a number of well-known properties, in particular the location of their zeros in the open interval $(-1,1)$. This property is no longer valid for other values of the parameters; in general, zeros are complex. In this paper we study the strong asymptotics of Jacobi polynomials where the real parameters $\alpha_n,\beta_n$ depend on $n$ in such a way that $$ \lim_{n\to\infty}\frac{\alpha_{n}}{n}=A, \quad \lim_{n\to\infty}\frac{\beta_{n}}{n}=B, $$ with $A,B \in \mathbb{R}$. We restrict our attention to the case where the limits $A,B$ are not both positive and take values outside of the triangle bounded by the straight lines A=0, B=0 and $A+B+2=0$. As a corollary, we show that in the limit the zeros distribute along certain curves that constitute trajectories of a quadratic differential. The non-hermitian orthogonality relations for Jacobi polynomials with varying parameters lie in the core of our approach; in the cases we consider, these relations hold on a single contour of the complex plane. The asymptotic analysis is performed using the Deift-Zhou steepest descent method based on the Riemann-Hilbert reformulation of Jacobi polynomials.
format info:eu-repo/semantics/article
id oai:repositorio.ual.es:10835-1641
institution Universidad de Cuenca
language English
publishDate 2012
record_format dspace
spelling oai:repositorio.ual.es:10835-16412023-04-12T19:36:51Z Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour Martínez-Finkelshtein, Andrei Orive, R. Análisis asintótico Ortogonalidad no hermitiana Caracterización de Riemann-Hilbert Asymptotic analysis Non-hermitian orthogonality Steepest descent method Riemann–Hilbert characterization Classical Jacobi polynomials $P_{n}^{(\alpha,\beta)}$, with $\alpha, \beta>-1$, have a number of well-known properties, in particular the location of their zeros in the open interval $(-1,1)$. This property is no longer valid for other values of the parameters; in general, zeros are complex. In this paper we study the strong asymptotics of Jacobi polynomials where the real parameters $\alpha_n,\beta_n$ depend on $n$ in such a way that $$ \lim_{n\to\infty}\frac{\alpha_{n}}{n}=A, \quad \lim_{n\to\infty}\frac{\beta_{n}}{n}=B, $$ with $A,B \in \mathbb{R}$. We restrict our attention to the case where the limits $A,B$ are not both positive and take values outside of the triangle bounded by the straight lines A=0, B=0 and $A+B+2=0$. As a corollary, we show that in the limit the zeros distribute along certain curves that constitute trajectories of a quadratic differential. The non-hermitian orthogonality relations for Jacobi polynomials with varying parameters lie in the core of our approach; in the cases we consider, these relations hold on a single contour of the complex plane. The asymptotic analysis is performed using the Deift-Zhou steepest descent method based on the Riemann-Hilbert reformulation of Jacobi polynomials. 2012-08-03T10:08:32Z 2012-08-03T10:08:32Z 2005 info:eu-repo/semantics/article http://hdl.handle.net/10835/1641 en info:eu-repo/semantics/openAccess Journal of approximation theory Vol. 134, nº 2 (2005)
spellingShingle Análisis asintótico
Ortogonalidad no hermitiana
Caracterización de Riemann-Hilbert
Asymptotic analysis
Non-hermitian orthogonality
Steepest descent method
Riemann–Hilbert characterization
Martínez-Finkelshtein, Andrei
Orive, R.
Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour
title Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour
title_full Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour
title_fullStr Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour
title_full_unstemmed Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour
title_short Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour
title_sort riemann-hilbert analysis for jacobi polynomials orthogonal on a single contour
topic Análisis asintótico
Ortogonalidad no hermitiana
Caracterización de Riemann-Hilbert
Asymptotic analysis
Non-hermitian orthogonality
Steepest descent method
Riemann–Hilbert characterization
url http://hdl.handle.net/10835/1641
work_keys_str_mv AT martinezfinkelshteinandrei riemannhilbertanalysisforjacobipolynomialsorthogonalonasinglecontour
AT oriver riemannhilbertanalysisforjacobipolynomialsorthogonalonasinglecontour