Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour
Classical Jacobi polynomials $P_{n}^{(\alpha,\beta)}$, with $\alpha, \beta>-1$, have a number of well-known properties, in particular the location of their zeros in the open interval $(-1,1)$. This property is no longer valid for other values of the parameters; in general, zeros are complex. In t...
मुख्य लेखकों: | Martínez-Finkelshtein, Andrei, Orive, R. |
---|---|
स्वरूप: | info:eu-repo/semantics/article |
भाषा: | English |
प्रकाशित: |
2012
|
विषय: | |
ऑनलाइन पहुंच: | http://hdl.handle.net/10835/1641 |
समान संसाधन
-
On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials
द्वारा: Foulquié Moreno, A., और अन्य
प्रकाशित: (2012) -
Properties of Matrix Orthogonal Polynomials via their Riemann-Hilbert Characterization
द्वारा: Grünbaum, F. Alberto, और अन्य
प्रकाशित: (2012) -
Szego polynomials: a view from the Riemann-Hilbert window
द्वारा: Martínez-Finkelshtein, Andrei
प्रकाशित: (2012) -
Heine, Hilbert, Padé, Riemann, and Stieltjes: a John
द्वारा: Martínez-Finkelshtein, Andrei, और अन्य
प्रकाशित: (2012) -
Asymptotics of orthogonal polynomials for a weight with a jump on [-1; 1]
द्वारा: Foulquié Moreno, A., और अन्य
प्रकाशित: (2012)