Invariant and semi-invariant probabilistic normed spaces
We introduce the concept of semi-invariance among the PN spaces. In this paper we will find a sufficient condition for some PN spaces to be semi-invariant. We will show that PN spaces are normal(functional analysis) spaces.Urysohns's lemma, and Tietze extensions theorem for them are proved.
主要な著者: | Ghaemi, M.B., Lafuerza Guillén, Bernardo, Saiedinezhad, S. |
---|---|
フォーマット: | info:eu-repo/semantics/article |
言語: | English |
出版事項: |
Chaos, solitons and fractals
2014
|
主題: | |
オンライン・アクセス: | http://hdl.handle.net/10835/2748 |
類似資料
-
Translation-invariant generalized topologies induced by probabilistic norms
著者:: Lafuerza Guillén, Bernardo, 等
出版事項: (2014) -
Probabilistic total paranorms, F-norms and PN spaces
著者:: Ghaemi, M.B., 等
出版事項: (2014) -
A common fixed point for operators in probabilistic normed spaces
著者:: Ghaemi, M.B., 等
出版事項: (2014) -
Finite products of probabilistic normed spaces
著者:: Lafuerza Guillén, Bernardo
出版事項: (2014) -
Completion of probabilistic normed spaces
著者:: Lafuerza Guillén, Bernardo, 等
出版事項: (2014)