A New Method for Vertical Parallelisation of TAN Learning Based on Balanced Incomplete Block Designs
The framework of Bayesian networks is a widely popular formalism for performing belief update under uncertainty. Structure re- stricted Bayesian network models such as the Naive Bayes Model and Tree-Augmented Naive Bayes (TAN) Model have shown impressive per- formance for solving classi cation t...
Päätekijät: | Madsen, Anders L., Jensen, Frank, Salmerón Cerdán, Antonio, Karlsen, Martin, Langseth, Helge, Nielsen, Thomas D. |
---|---|
Aineistotyyppi: | info:eu-repo/semantics/article |
Kieli: | English |
Julkaistu: |
2017
|
Linkit: | http://hdl.handle.net/10835/4857 |
Samankaltaisia teoksia
-
Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block Designs
Tekijä: Salmerón Cerdán, Antonio, et al.
Julkaistu: (2017) -
Parameter learning in MTE networks using incomplete data
Tekijä: Fernández, Antonio, et al.
Julkaistu: (2012) -
LEARNING BAYESIAN NETWORKS FOR REGRESSION FROM INCOMPLETE DATABASES*
Tekijä: Fernández, Antonio, et al.
Julkaistu: (2017) -
Structural-EM for Learning PDG Models from Incomplete Data
Tekijä: Nielsen, Jens D., et al.
Julkaistu: (2012) -
Parallelization of the PC Algorithm
Tekijä: Madsen, Anders L., et al.
Julkaistu: (2017)