Parallel Importance Sampling in Conditional Linear Gaussian Networks

In this paper we analyse the problem of probabilistic inference in CLG networks when evidence comes in streams. In such situations, fast and scalable algorithms, able to provide accurate responses in a short time are required. We consider the instantiation of variational inference and importance s...

Full description

Bibliographic Details
Main Authors: Salmerón Cerdán, Antonio, Ramos López, Darío, Borchani, Hanen, Martínez, Ana M., Masegosa, Andrés R., Fernández, Antonio, Langseth, Helge, Madsen, Anders L., Nielsen, Thomas D.
Format: info:eu-repo/semantics/article
Language:English
Published: 2017
Online Access:http://hdl.handle.net/10835/4858
_version_ 1789406726905135104
author Salmerón Cerdán, Antonio
Ramos López, Darío
Borchani, Hanen
Martínez, Ana M.
Masegosa, Andrés R.
Fernández, Antonio
Langseth, Helge
Madsen, Anders L.
Nielsen, Thomas D.
author_facet Salmerón Cerdán, Antonio
Ramos López, Darío
Borchani, Hanen
Martínez, Ana M.
Masegosa, Andrés R.
Fernández, Antonio
Langseth, Helge
Madsen, Anders L.
Nielsen, Thomas D.
author_sort Salmerón Cerdán, Antonio
collection DSpace
description In this paper we analyse the problem of probabilistic inference in CLG networks when evidence comes in streams. In such situations, fast and scalable algorithms, able to provide accurate responses in a short time are required. We consider the instantiation of variational inference and importance sampling, two well known tools for probabilistic inference, to the CLG case. The experimental results over synthetic networks show how a parallel version importance sampling, and more precisely evidence weighting, is a promising scheme, as it is accurate and scales up with respect to available computing resources.
format info:eu-repo/semantics/article
id oai:repositorio.ual.es:10835-4858
institution Universidad de Cuenca
language English
publishDate 2017
record_format dspace
spelling oai:repositorio.ual.es:10835-48582023-04-12T19:40:26Z Parallel Importance Sampling in Conditional Linear Gaussian Networks Salmerón Cerdán, Antonio Ramos López, Darío Borchani, Hanen Martínez, Ana M. Masegosa, Andrés R. Fernández, Antonio Langseth, Helge Madsen, Anders L. Nielsen, Thomas D. In this paper we analyse the problem of probabilistic inference in CLG networks when evidence comes in streams. In such situations, fast and scalable algorithms, able to provide accurate responses in a short time are required. We consider the instantiation of variational inference and importance sampling, two well known tools for probabilistic inference, to the CLG case. The experimental results over synthetic networks show how a parallel version importance sampling, and more precisely evidence weighting, is a promising scheme, as it is accurate and scales up with respect to available computing resources. 2017-06-14T09:57:01Z 2017-06-14T09:57:01Z 2015 info:eu-repo/semantics/article http://hdl.handle.net/10835/4858 en Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess
spellingShingle Salmerón Cerdán, Antonio
Ramos López, Darío
Borchani, Hanen
Martínez, Ana M.
Masegosa, Andrés R.
Fernández, Antonio
Langseth, Helge
Madsen, Anders L.
Nielsen, Thomas D.
Parallel Importance Sampling in Conditional Linear Gaussian Networks
title Parallel Importance Sampling in Conditional Linear Gaussian Networks
title_full Parallel Importance Sampling in Conditional Linear Gaussian Networks
title_fullStr Parallel Importance Sampling in Conditional Linear Gaussian Networks
title_full_unstemmed Parallel Importance Sampling in Conditional Linear Gaussian Networks
title_short Parallel Importance Sampling in Conditional Linear Gaussian Networks
title_sort parallel importance sampling in conditional linear gaussian networks
url http://hdl.handle.net/10835/4858
work_keys_str_mv AT salmeroncerdanantonio parallelimportancesamplinginconditionallineargaussiannetworks
AT ramoslopezdario parallelimportancesamplinginconditionallineargaussiannetworks
AT borchanihanen parallelimportancesamplinginconditionallineargaussiannetworks
AT martinezanam parallelimportancesamplinginconditionallineargaussiannetworks
AT masegosaandresr parallelimportancesamplinginconditionallineargaussiannetworks
AT fernandezantonio parallelimportancesamplinginconditionallineargaussiannetworks
AT langsethhelge parallelimportancesamplinginconditionallineargaussiannetworks
AT madsenandersl parallelimportancesamplinginconditionallineargaussiannetworks
AT nielsenthomasd parallelimportancesamplinginconditionallineargaussiannetworks